
Holy Cross College (Autonomous), Nagercoil

Kanyakumari District, Tamil Nadu. Accredited with A⁺ by NAAC - IV cycle – CGPA 3.35

Affiliated to

Manonmaniam Sundaranar University, Tirunelveli

Semester I & II Guidelines & Syllabus DEPARTMENT OF ZOOLOGY

2023-2026 (With effect from the academic year 2023-2024)

Issued from THE DEANS' OFFICE

VISION

Empower the students with Academic skills, Research aptitude and social commitment through holistic education.

MISSION

- 1. Foster knowledge and skills through innovative teaching and instill moral and ethical values.
- 2. Render opportunities for critical thinking, communication, and collaboration.

- 3. Create research ambience to promote innovations and contemporary skills relevant to local and global needs.
- 4. Inspire to explore the natural resources and connect with nature.
- 5. Promote passion to serve the local community by creating empowered women of
- 6. Commitment and social consciousness through outreach and exposure programmes.
- 7. Facilitate life-long learning, participatory leadership, and commitment to society.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

POs	Upon completion of M.A./ M. Sc. /MSW Degree Programme, the graduates will be able to:	Mapping with Mission
PEO1	apply scientific and computational technology to solve socio ecological issues and pursue research.	M1, M2
PEO2	continue to learn and advance their career in industry both in private and public sectors	M4 & M5
PEO3	develop leadership, teamwork, and professional abilities to become a more cultured and civilized person and to tackle the challenges in serving the country.	M2, M5 & M6

PROGRAMME OUTCOMES (POS)

РО	Upon completion of M.Sc. Degree Programme, the graduates will be able to:	Mapping with PEOs
PO1	apply their knowledge, analyze complex problems, think independently, formulate and perform quality research.	PEO1 & PEO2
PO2	carry out internship programmes and research projects to develop scientific and innovative ideas through effective communication.	PEO1, PEO2 & PEO3
PO3	develop a multidisciplinary perspective and contribute to the knowledge capital of the globe.	PEO 2
PO4	develop innovative initiatives to sustain ecofriendly environment	PEO1, PEO2
PO5	pursue active career, team work and using managerial skills guide people to the right destination in a smooth and efficient way.	PEO 2
PO6	employ appropriate analysis tools and ICT in a range of learning scenarios, demonstrating the capacity to find, assess, and apply relevant information sources.	PEO1, PEO2 & PEO3
PO7	learn independently for lifelong to execute professional, social and ethical responsibilities promoting sustainable development.	PEO3

PROGRAMME SPECIFIC OUTCOMES (PSOs)

PSO	Upon completion of M.Sc. Programme, the graduates will be able	РО	
	to:	addressed	

PSO1	explain the various aspects of life sciences including Biochemistry, Cell and Molecular Biology, Biosystematics, Genetics, Evolution, Physiology, Developmental Biology, Exobiology, Immunology, Microbiology, Endocrinology, Bioinformatics, Biotechnology and Nanobiology.	PO1, PO2
PSO2	carryout experimental techniques, analyze statistically, draw conclusions, write report, present effectively and publish in indexed journals effectively	PO2, PO4, PO5, PO6
PSO 3	develop personal and key transferable skills and entrepreneurial skills through industrial / field visits and internships.	PO2, PO3
PSO 4	independently assemble facts, summarize and draw conclusions from scientific text and develop competence in the design and execution of research.	PO1, PO2, PO3, PO4, PO6
PSO 5	discriminate societal and environmental problems, adopt relevant technology, synthesis solution and claim for IPR	PO4, PO5, PO7

Mapping of PO'S and PSO's

POs	PSO1	PSO 2	PSO3	PSO4	PSO5
PO1	М	S	М	S	Μ
PO2	М	S	S	S	S
PO3	S	М	М	S	S
PO4	S	S	S	S	S
PO5	М	S	S	S	S
PO6	S	S	М	S	S
PO7	S	S	S	S	S

Eligibility

For Admission: A candidate who is a graduate of this college or any other recognized University in the main subject/subjects as given below against each or who has passed an examination accepted as equivalent by the Syndicate of Manonmaniam Sundaranar University, Tirunelveli, is eligible for admission.

*S - Strong; M - Medium; L - Low

Duration of the Programme: 2years

Medium of Instruction: English

Passing Minimum

A minimum of 40% in the external examination and an aggregate of minimum 40% is required. There is no minimum pass mark for the continuous internal assessment.

Components of Mi.Sc.1 Togramme				
Core Course	9x 100	900		
Core Lab Course	3 x 100	300		
Elective Course	6 x 100	600		
Elective Lab Course	2x100	200		
Core Project	1 x 100	100		
Total Marks		2100		

Components of M.Sc.Programme

Course Structure

Distribution of Hours and Credits

(i) Curricular Courses:

CourseSEMESTERTotal	
---------------------	--

	Ι	II	III	IV	Hours	Credits
Core– Theory	7 (5) +	6 (5) +	6 (5) +	6 (5) +		
	7 (5) +	6 (5) +	6 (5) +	6 (5)		
			6 (5) +		70	53
Core Lab course	4 (2)	4 (2)	6 (4) 6 (4)			
Elective Course	5 (3) +	4 (3) +	3 (3)	4 (3)	29	22
	5 (3)	4 (3)	-	-		
Elective Lab Course	2 (2)	2 (2)				
Core Project		-		10(7)	10	7
Skill Enhancement Course		4 (2)	3 (2)	4 (2)	11	6
Internship/Industrial Activity			(2)		-	2
Extension Activity				(1)	-	1
Total	30 (20)	30 (22)	30 26)	30 (23)	120	91

Total Number of Hours = 120

(ii) Co-curricular Courses

Course	SEMESTER				Total
	Ι	II	III	IV	Credits
Life Skill Training –I	-	(1)	-	-	1
Life Skill Training –II	-	-	-	(1)	1
Field Project	(1)		-		1
Specific Value-Added Courses	(1)		(1)		2
Generic Value-Added Courses		(1)		(1)	2
MOOC		(1)		(1)	2
Community Engagement Activity (UBA)		(1)			1

Total Number of Credits = 91 + (10)

Semester-I					
Course Code	Name of the Course	Credit	Hours		
ZP231CC1	Core Course - I : Structure and function of	5	7		
	Invertebrates				
ZP231CC2	Core Course - II: Comparative Anatomy of	5	7		
	Vertebrates				
ZP231CP1	Core Lab Course – I: Lab Course in	2	4		
	Invertebrates & Vertebrates				
ZP231EC1	Elective Course – I:	3	5		
	a) Molecules and their interaction relevant	L			

Course Structure

	to Biology		
ZP231EC2	Elective Course – I:		
	b) Forensic Biology		
ZP231EC3	Elective Course – I:		
	c) Wildlife Conservation and Management		
ZP231EC4	Elective Course – II:	3	5
	a) Biostatistics		
ZP231EC5	Elective Course – II:		
	b) Applied Zoology		
ZP231EC6	Elective Course – II:		
	c) Pest Management		
ZP231EP1	Elective Lab Course -I:	2	2
	Molecules and their interaction relevant to		
	Biology & Biostatistics		
	Total	20	30

Semester-II

Course Code	Title of the Course	Credits	Hours / Week
ZP232CC1	Core Course – III: Cellular and Molecular Biology	5	6
ZP232CC2	Core Course – IV: Developmental Biology	5	6
ZP232CP1	Core Lab Course – II: Lab Course in Cell Biology and Developmental Biology	2	4
ZP232EC1	Elective Course – III: a) Economic Entomology	3	4
ZP232EC2	Elective Course – III: b) Parasitology		
ZP232EC3	Elective Course – III: c) Agrochemicals & Pest management		
ZP232EC4	Elective Course – IV: a) Research methodology	3	4
ZP232EC5	Elective Course -IV: b) Apiculture		
ZP232EC6	Elective Course – IV: c) Sericulture		
ZP232EP1	Elective Lab Course – II: Economic Entomology & Research Methodology	2	2
ZP232SE1	Skill Enhancement Course I: Poultry Farming	2	4
	Total	22	30

Specific Value-added Course

Semester	Code	Title of the Course	Credit
I & II	PG23LST1	Life Skill Training	1
II & IV	-	MOOC	1+1
II	PG232CE1	Community Engagement Course (CEC)	1
III & IV	PG23LST2	Life Skill Training	1
Ι	ZP231FP1	Field Project	1
I & III	ZP231V01 / ZP233V01	Specific Value-added Course	1+1

II & IV	PG232V01- PG232V12/ PG234V01- PG234V12	Generic Value-added Course	1+1
		Total	10

S. No.	Course code	Title of the course	Total hours
Ι	ZP231V01	Basics of excel	30

Examination Pattern

i) Core Course / Elective Course

Internal: External-25:75

Continuous Internal Assessment (CIA)

Internal Components and Distribution of Marks

Components	Marks
Internal test (2) (40 marks)	10
Quiz (2) (20 marks)	5
Seminar (10 marks)	5
Assignment: (Model Making, Exhibition, Role Play, Group Discussion, Problem Solving, Class Test, Open Book Test (Minimum three items per course) (30 marks)	5
Total	25

Question Pattern

Internal Test	Marks	External Exam	Marks
Part A 4 x 1 (No choice)	4	Part A 10 x 1 (No choice)	10
Part B 3 x 4(Internal choice)	12	Part B 5 x 6 (Internal choice)	30
Part C 3 x 8 (Internal choice)	24	Part C 5 x 12 (Internal choice)	60
Total	40	Total	100

ii) Lab Course:

Ratio of Internal and External= 25:75 Total: 100 marks

Internal Components and Distribution of Marks

Internal Components	Marks
Performance of the Experiments	10

Regularity in attending practical and submission of records	5
Record	5
Model exam	5
Total	25

Question pattern

External Exam	Marks
Major Practical	75
Minor Practical / Spotters /Record	73
Total	75

iii) Skill Enhancement Course

Ratio of Internal and External = 25:75

Internal Components and Distribution of Marks

Components	Marks
Internal test (2)	10
Quiz (2)	5
Assignment: (Model Making, Exhibition, Role Play, Album, Group Activity (Mime, Skit, Song) (Minimum three items per course)	10
Total	25

Question Pattern			
Internal Test	Marks	External Exam	Mar ks
Part A 2 x 2(No Choice)	4	Part A 5 x 2(No Choice)	10
Part B 3 x 4 (Open choice Three out of Five)	12	Part B 5 x 5 (Open choice any Five out of Eight)	25
Part C 1 x 9 (Open choice One out of Three)	9	Part C 5 x 8 (Open choice any Five out of Eight)	40
Total	25	Total	75

iv) Internship/ Industrial Activity

Components	Marks
Industry Contribution	50
Report & Viva-voce	50

v) Project:

Ratio of Internal and External 25 : 75

Internal (Supervisor)		Marks
I Review		5
II Review		5
Report		15

External (External Examiner)	
Report	40
Viva-voce (individual, open viva-voce)	35
Total	100

Co-Curricular Courses:

(i) Life Skill Training

Internal Component

Components		Marks
	Album (20 pages)	30
Life Skill Training -I	Group Song, Mime, Skit	20
	(Group of 5students)	
	Total	50
Life Skill Training -II	Case Study (30 pages)	50
	Total	50

External Component

Written Test	Five out of Seven (5 x 10)	50
	Total	50

(ii) Field Project:

Components	Marks
Field Work	50
Report & Viva-voce	50

(iii) Specific Value-Added Courses & Generic Value-Added Courses:

Components	Marks
Internal	25
External	75

(iv) Community Engagement Activity-UBA

Internal Component						
Component	Marks					
Attendance (Field Work)	30					
Participation	20					
Total	50					

External Component

Component	Marks
Group Project Report/ Case Study	50
(10-15 pages in print)	
Total	50

Outcome Based Education

(i) Knowledge levels for assessment of Outcomes based on Blooms Taxonomy

S. No	Level	Parameter	Description
1	KI	Knowledge/Remembering	It is the ability to remember the previously learned
2	K2	Comprehension/Understanding	The learner explains ideas or concepts
3	K3	Application/Applying	The learner uses information in a new way
4	K4	Analysis/Analysing	The learner distinguishes among different parts
5	K5	Evaluation/Evaluating	The learner justifies a stand or decision
6	K6	Synthesis /Creating	The learner creates a new product or point of view

(ii) Weightage of K – levels in Question Paper Number of questions for each cognitive level:

1 (uiii)	ber of question			i cogi		it vel.								
Assessment	Cognitiv e Level	KI			K2			K3			K4,	, K5, 1	K6	Tot al
Internal Test	Part	А	В	С	Α	В	С	А	В	С	Α	В	С	
	No. Of Questions	1	1			1		1		1	2	1	2	10
External Examinati	Part	А	В	С	Α	В	C	А	В	С	Α	В	C	
on	No. Of Questio ns	3	-	1	3	1	1	1	2	1	3	2	2	20

Evaluation

- i. The performance of a student in each Course is evaluated in terms of percentage of marks with a provision for conversion to grade points.
- ii. Evaluation for each Course shall be done by a Continuous Internal Assessment (CIA) by the Course teacher as well as by an end semester examination and will be consolidated at the end of the semester.
- iii. There shall be examinations at the end of each semester, for odd semesters in October/November; for even semesters in April / May.
- iv. A candidate who does not pass the examination in any course (s) shall be permitted to re-appear in such failed course (s) in the subsequent examination to be held in October / November or April / May. However, candidates who have arrears in Practical Examination(s) shall be permitted to re-appear for their arrears only along with Regular Practical examinations in the respective semester.

iv. Viva- voce: Each candidate shall be required to appear for Viva-voce Examination in defense of the Project.

vi. The results of all the examinations will be published in the College website.

Conferment of the Master's Degree

A candidate shall be eligible for the conferment of the Degree of Master of Arts / Science / Commerce only if the minimum required credits for the programme thereof (91 +10 credits) is earned.

Grading System

For a semester examination:

Calculation of Grade Point Average for End Semester Examination:

GPA = <u>Sum of the multiplication of grade points by the credits of the course</u> Sum of the credits of the courses (passed) in a semester

For the entire programme:

Cumulative Grade Point Average (CGPA) $\Sigma_n \Sigma_i C_{ni} G_{ni} / \Sigma_{ni} \Sigma_i C_{ni}$

CGPA = <u>Sum of the multiplication of grade points by the credits of the entire programme</u>

Sum of the credits of the courses of the entire programme

Where

- C_i Credits earned for course i in any semester
- G_i Grade point obtained for course i in any semester

n - semester in which such courses were credited

Final Result

Conversion of Marks to Grade Points and Letter Grade

Range of Marks	Grade Points	Letter Grade	Description
90-100	9.0-10.0	0	Outstanding
80-89	8.0-8.9	D+	Excellent
75-79	7.5-7.9	D	Distinction
70-74	7.0-7.4	A+	Very Good
60-69	6.0-6.9	А	Good
50-59	5.0-5.9	В	Average
00-49	0.0	U	Re-Appear
ABSENT	0.0	AAA	ABSENT

Overall Performance

CGPA	Grade	Classification of Final Results
9.5-10.0	O+	Eirst Class Examplery*
9.0 and above but below 9.5	0	First Class – Exemplary*
8.5 and above but below 9.0	D++	
8.0 and above but below 8.5	D+	First Class with Distinction*
7.5 and above but below 8.0	D	
7.0 and above but below 7.5	A++	Einst Class
6.5 and above but below 7.0	A+	First Class
6.0and above but below 6.5	А	
5.5and above but below 6.0	B+	Second Class
5.0 and above but below 5.5	В	Second Class
0.0 and above but below 5.0	U	Re-appear

*The candidates who have passed in the first appearance and within the prescribed semester are eligible.

SEMESTER I

CORE COURSE I: STRUCTURE AND FUNCTION OF INVERTEBRATES

Course Code	т	T	р	G	Credita	Inst Hound	Total		Marks	
Course Code	L	I	r	מ	Creans	Inst. Hours	Hours	CIA	External	Total
ZP231CC1	5	1	•	1	4	7	105	25	75	100

Pre-requisite:

Students should know the taxonomical classification of invertebrates in relation to their functional morphology.

Learning Objectives:

- 1. To realize the range of diversification of invertebrate animals.
- 2. To understand the concept of classification and their characteristic features of major group of invertebrates.
- 3. To know the functional morphology of system biology of invertebrates
- 4. To enable to find out the ancestors or derivatives of any taxon.

Course Outcomes

On the su	On the successful completion of the course, student will be able to:					
CO1	remember the general concepts and major groups in animal classification, origin, struct5re, functions and distribution of life in all its forms.	K1				
CO2	understand the evolutionary process. All are linked in a sequence of life pattern	K2				
CO3	apply this for pre-professional work in agriculture and conservation of life forms.	К3				
CO4	analyze what lies beyond our present knowledge of life process.	K4				
CO5	evaluate and to create the perfect phylogenetic relationship in classification.	K5				

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6- Create

Units	Contents	No. of Hours
Ι	structure and function in invertebrates: Principles of Animal taxonomy; Species concept; International code of zoological nomenclature; Taxonomic procedures; New trends in taxonomy	21
II	organization of coelom: Acoelomates; Pseudocoelomates; Coelomates: Protostomia and Deuterostomes; Locomotion: Flagella and ciliary movement in Protozoa; Hydrostatic movement in Coelenterata, Annelida and Echinodermata	21
III	nutrition and Digestion: Patterns of feeding and digestion in lower metazoan; Filter feeding in Polychaeta, Mollusca and Echinodermata. Respiration: Organs of respiration: Gills, lungs and trachea; Respiratory pigments; Mechanism of respiration	21
IV	excretion: Organs of excretion: coelom, coelomoducts, Nephridia and Malpighian tubules; Mechanisms of excretion; Excretion and osmoregulation. Nervous system: Primitive nervous system: Coelenterata and Echinodermata; Advanced nervous system: Annelida, Arthropoda (Crustacea and Insecta) and Mollusca (Cephalopoda); Trends in neural evolution	21
V	invertebrate larvae: Larval forms of free-living invertebrates - Larval forms of parasites; Strategies and Evolutionary significance of larval forms. Minor Phyla: Concept and significance; Organization and general characters	21

Text Books:

- 1. Ekambaranatha Iyer, 2000. A Manual of Zoology, 10th edition, Viswanathan, S., Printers & Publishers Pvt Ltd.
- 2. Barrington, E. J.W. 1979. Invertebrate Structure and Function. The English Language Book Society and Nelson, pp-765.
- 3. Ruppert and Barnes, R.D. (2006). Invertebrate Zoology, VIII Edition. Holt Saunders International Edition.

Reference Books:

- 1. Barnes, R. D. 1974. Invertebrate Zoology, (Second Edition), Holt-Saunders International Edition, pp-1024.
- 2. Barnes, R. S. K., P. Calow, P. J. W. Olive, D. W. Golding, J. J. Spicer. 2013. The Invertebrates: A Synthesis. Third Edition. John Wiles & Sons Inc., Hoboken. New Jersey, New Delhi.
- 3. Dechenik, J. A. 2015. Biology of Invertebrates (Seventh Edition). Published by McGraw Hill Education (India) Private Limited, pp-624.

Web Resources

- 1. https://www.uou.ac.in/sites/default/files/slm/MSCZO-501.pdf
- 2. https://manoa.hawaii.edu/exploringourfluidearth/biological/invertebrates/structure-and-function
- 3. https://www.zoologytalks.com/category/structure-and-functions-of- invertebrates/
- 4. https://www.bilasagirlscollege.ac.in/newsData/D54.pdf

COs **PO1 PO2 PO3 PO4 PO5 PO6 PO7** 3 3 2 3 3 3 2 **CO1** 3 3 2 2 3 3 2 **CO2** 2 3 3 3 3 2 2 **CO3 CO4** 3 2 3 2 3 3 2 **CO5** 3 2 3 2 3 3 2 TOTAL 15 12 13 11 13 11 10 3 AVERAGE 2.4 2.6 2.2 2.6 2.2 2

MAPPING WITH PROGRAMME OUTCOMES

3 – Strong, 2- Medium, 1- Low

COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	3	2
CO2	3	3	2	3	3
CO3	2	2	3	3	2
CO4	3	3	3	3	3
CO 5	2	2	2	2	2
Total	13	13	12	14	12
Average	2.6	2.6	2.4	2.8	2.4

SEMESTER – I CORE COURSE II: COMPARATIVE ANATOMY OF VERTEBRATES

Course Code	т	трс		G	Credits Inst. Hours		Total		Marks	
Course Code	L	I	r	3	Creans	Inst. Hours	Hours	CIA	External	Total
ZP231CC2	5	1	•	1	5	7	105	25	75	100

Pre-requisite:

Students with knowledge and comprehension on zoology

Learning Objectives:

- 1. To impart conceptual knowledge about the animal life in the air and their behaviours.
- 2. To understanding the origin and efficiency of mammals and evolutionary changes that occurred in the life of vertebrates.

Course Outcomes:

On success	On successful completion of the course, the student will be able to:					
CO1	remember the general concepts and major groups in animal classification, origin, structure, functions, and distribution of life in all its forms.	K1				
CO2	understand the evolutionary process. All are linked in a sequence of life patterns.	K2				
CO3	apply this for pre-professional work in agriculture and conservation of life forms.	К3				
CO4	analyze what lies beyond our present knowledge of life process.	K4				
CO5	evaluate and to create the perfect phylogenetic relationship in classification.	K5				

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create

Unit	Contents	Hours
I	Origin of vertebrates: Concept of Protochordata; The nature of vertebrate morphology; Definition, scope and relation to other disciplines; Importance of the study of vertebrate morphology.	21
II	Origin and classification of vertebrates: Vertebrate integument and its derivatives. Development, general structure and functions of skin and its derivatives; Glands, scales, horns, claws, nails, hoofs, feathers and hairs.	21
ш	General plan of circulation in various groups: Blood; Evolution of heart; Evolution of aortic arches and portal systems. Respiratory system: Characters of respiratory tissue; Internal and external respiration; Comparative account of respiratory organs	21
IV	Skeletal system: Form, function, body size and skeletal elements of the body; Comparative account of jaw suspensorium, Vertebral column; Limbs and girdles; Evolution of Urinogenital system in vertebrate series.	21
v	Sense organs: Simple receptors; Organs of Olfaction and taste; Lateral line system; Electroreception. Nervous system: Comparative anatomy of the brain in relation to its functions; Comparative anatomy of spinal cord; Nerves-Cranial, Peripheral and Autonomous nervous systems.	21
Self- Study	Scope and relation of vertebrate morphology to other disciplines, Vertebrate and its derivatives, Evolution of aortic arches and portal systems, Co account of jaw suspensorium, Comparative anatomy of spinal cord	-

Text Books:

- 1. Yong, J. Z. 1981. The life of Vertebrates, English language Book society, London, pp-645.
- 2. Romer, A.S. 1971. The Vertebrate body, W.B.S. Saunders, Philadelphia, pp-600.
- 3. Ayyar, E.K. and T.N. Ananthakrishnan, 1992. Manual of Zoology Vol. II (Chordata), S.

Viswanathan (Printers and Publishers) Pvt Ltd., Madras, 891p.

- 4. Jordan, E.K. and P.S. Verma, 1995. Chordate Zoology and Elements of Animal Physiology, 10th edition, S. Chand & Co Ltd., Ram Nagar, New Delhi, 1151 pp.
- 5. Ganguly, Sinha, Bharati Goswami and Adhikari, 2004. Biology of animals Vol.II New central book Agency (p) Ltd.

Reference Books:

- 1. Waterman, A.J. 1972. Chordate Structure and Function, MacMillan Co., New York, pp.587.
- 2. Parker T. J. and W. A. Haswell. 1962. A text book of Zoology, Vol. 2, Vertebrates, 7th Edition, Mac Millan Press, London, pp-750.
- 3. Ekambaranatha Ayyar and T. N. Ananthakrishnan. 2009. Manual of Zoology, Vol II, S. Viswanathan Pvt. Ltd. Chennai.
- 4. Kotpal, 2019. R.L. Modern Text Book of Zoology Vertebrates, 4th Edition, Rastogi Publications, Meerut, pp-968.

Web sources:

- 1. Swayam Prabha: https://www.swayamprabha.gov.in/index.php/program/archive/9
- 2. https://bit.ly/3Av1Ejg/
- 3. https://bit.ly/3kqTfYz/
- 4. https://biologyeducare.com/aves/
- 5. https://www.vedantu.com/biology/mammalia/

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2	1	3	2	3	2
CO2	3	1	1	3	2	3	2
CO3	3	2	1	2	2	2	2
CO4	3	1	1	3	1	3	2
CO5	3	2	1	2	3	3	2
Total	15	8	5	13	10	14	10
Average	3	1.6	1	2.6	2	2.8	2

*3 - Strong; 2 - Medium; 1 - Low

COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	3	2
CO2	3	3	2	2	3
CO3	2	2	3	2	2
CO4	3	3	3	3	3
CO 5	2	3	2	2	2
Total	13	14	12	12	12
Average	2.6	2.8	2.4	2.4	2.4

SEMESTER I

CORE LAB COURSE I: LAB COURSE IN INVERTEBRATES & VERTEBRATES

Course Code	т	'I' U N' ('modifa mat onma		Charling mat loung		Total	Marks			
Course Code	L	I	r	3	Creans	Inst. nours	Hours	CIA	External	Total
ZP231CP1	•	-	4		3	4	60	25	75	100

Pre-requisite

Basic knowledge on the animals living in different habitats

Learning Objectives:

- 1. Understanding the salient features and functional anatomy of different systems and the skeletal system in invertebrates & vertebrates.
- 2. Developing the skill in mounting techniques of the biological samples.

Course Outcomes

On the successful completion of the course, student will be able to:				
C01	understand the structure and functions of various systems in animals	K1		
CO2	learn the adaptive features of different groups of animals	K2		
CO3	learn the mounting techniques	K3		
CO4	acquire strong knowledge on the animal skeletal system	K4		

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create

INVERTEBRATES						
Disse	ection					
	Earthworm	: Nervous system				
	Pila	: Digestive and nervous systems				
	Sepia	: Nervous system				
	Cockroach	: Nervous system				
	Grasshopper	: Digestive system and mouth parts				
	Prawn	: Appendages, nervous and digestive systems				
	Crab	: Nervous system				
Study	of the followi	ng slides with special reference to their salient features and their				
modes	s of life					
1.	Amoeba					
2.	Entamoeba hi	istolytica				
3.	Paramecium					
	Hydra with bu					
	Sporocyst – L					
6.	<i>Cercaria</i> larv	/a				
	Tape worm (S	Scolex)				
8.	Ascaris T. S.					
9.	Mysis of praw	vn				
Spotter	S					
1.	Scorpion					
2.	Penaeus indic	cus				
3.	Emerita (Hip	pa)				
4.	Perna viridis					

Mounting

Earthworm	: Body setae
Pila	: Radula
Cockroach	: Mouth parts
Grasshopper	: Mouth parts

VERTEBRATES
Study the nervous system of Indian dog shark - Dissection
 Nervous system of <i>Scoliodon laticaudatus</i> – 5th or Trigeminal nerve Nervous system of <i>Scoliodon laticaudatus</i> – 7th or Facial nerve Nervous system of <i>Scoliodon laticaudatus</i> – 9th and 10th or Glossopharyngeal & Vagus nerve
Study of the following specimens with special reference to their salient features and their modes of life
1. Amphioxus sp. (Lancelet) 2. Ascidia sp. (sea squirt) 3. Scoliodon laticaudatus (Indian dog shark) 4. Trygon sp. (Sting ray) 5. Torpedo sp. (Electric ray) 6. Arius maculatus (Cat fish) 7. Belone cancila (Flute fish) 8. Exocoetus poecilopterus (Flying fish) 9. Mugil cephalus (Mullet) 10. Tilapia mossambicus (Tilapia) 11. Rachycentron canadum (Cobia) 12. Tetrodon punctatus (Puffer fish) 13. Dendrophis sp. (Tree snake) Study of the different types of scales in fishes
 Cycloid scale Ctenoid scale Placoid scale
Study of the frog skeleton system (Representative samples)
 Entire skeleton Skull Hyoid apparatus Pectoral girdle and sternum Pelvic girdle Fore limb Windthe limb
7. Hind limb Mounting
1. Weberian ossicles of fish

Text Books:

- 1. Lal, S.S. 2009. Practical Zoology, Rastogi Publications, pp-484.
- 2. Iuliis G. D. and D. Pulerà, 2007. The Dissection of Vertebrates: A Laboratory Manual. Academic Press, Imprint of Elsevier Publication, pp-416.
- 3. Verma, P.S. 2000. Manual of Practical Zoology: Chordates, S. Chand Publishing Company, pp-528

Reference Books:

- 1. Preeti, G., and C. Mridula, 2000. Modern Experimental Zoology, Indus International Publication.
- 2. Sinha, J., A. K. Chatterjeee, P. Chattopadhya. 2011. Advanced Practical Zoology, Arunabha Sen Publishers, pp-1070.

Web Resources:

- 1. http://www.csrtimys.res.in/
- 2. http://csb.gov.in/
- 3. https://iinrg.icar.gov.in/
- 4. https://www.nationalgeographic.com/animals/invertebrates/
- 5. https://www.youtube.com/watch?v=b04hc_kOY10
- 6. https://bit.ly/3CzTEy8
- 7. http://tolweb.org/Chordata/2499
- 8. https://www.nhm.ac.uk/

MAFFING WITH FROGRAMME OUTCOMES												
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8				
CO1	3	2	3	3	2	3	2	2				
CO2	3	2	3	3	3	2	2	2				
CO3	3	2	3	3	3	2	2	2				
CO4	3	2	3	3	2	2	2	2				
TOTAL	12	6	12	12	10	9	8	8				
AVERAGE	3	1.5	3	3	2.5	2.25	2	2				

MAPPING WITH PROGRAMME OUTCOMES

3 – Strong, 2- Medium, 1- Low MAPPING WITH PROGRAMME SPECIFIC OUTCOMES

COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	3	3
CO2	3	3	2	2	3
CO3	2	2	3	2	2
CO4	3	3	3	3	3
Total	11	11	10	10	11
Average	2.75	2.75	2.5	2.5	2.75

SEMESTER I ELECTIVE COURSE - I (a) MOLECULES AND THEIR INTERACTION RELEVANT TO BIOLOGY

Course Code	т	т	р	c	Credita	Inst. Hours	Total hrs		Marks	
Course Coue	L	I	L	гр	Creatis	mst. nours		CIA	External	Total
ZP231EC1	3	1	•	1	3	5	75	25	75	100

Pre-requisite:

Understanding fundamental properties of elements, atoms, molecules, chemical bonds, linkages and structure, composition, metabolism, and functions of biomolecules.

Learning Objectives

- 1. Students should know the fundamentals of biochemistry.
- 2. To develop analytical and communicative skills to conduct experiments and interpret the results

Course Outcome

CO1learn the structure, properties, metabolism, and bioenergetics of biomoleculesK1CO2acquire knowledge on various classes and major types of enzymes, classification, their mechanism of action and regulationK2CO3understand the fundamentals of biophysical chemistry and biochemistry, importance, and applications of methods inK3	On the successful completion of the course, student will be able to:											
CO2acquire knowledge on various classes and major types of enzymes, classification, their mechanism of action and regulationK2CO3understand the fundamentals of biophysical chemistry and biochemistry, importance, and applications of methods inK3	CO1	learn the structure, properties, metabolism, and bioenergetics of	earn the structure, properties, metabolism, and bioenergetics of K1									
CO3understand the fundamentals of biophysical chemistry and biochemistry, importance, and applications of methods inK3		biomolecules										
CO3 understand the fundamentals of biophysical chemistry and k3 biochemistry, importance, and applications of methods in	CO2	acquire knowledge on various classes and major types of enzymes,	K2									
biochemistry, importance, and applications of methods in		classification, their mechanism of action and regulation										
	CO3	understand the fundamentals of biophysical chemistry and K3										
		biochemistry, importance, and applications of methods in										
conforming the structure of biopolymers		conforming the structure of biopolymers										
CO4 comprehend the structural organization of and proteins, K4	CO4	comprehend the structural organization of and proteins,	K4									
carbohydrates, nucleic acids and lipids		carbohydrates, nucleic acids and lipids										
CO5 familiarize the use of methods for the identification, K5	CO5	familiarize the use of methods for the identification,	K5									
characterization, and conformation of biopolymer structures		characterization, and conformation of biopolymer structures										

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate

Units	Contents	No. of Hours
Ι	Basics of biophysical chemistry and biochemistry: Structure of atoms, molecules, and chemical bonds - Principles of biophysical chemistry (pH, buffer, reaction kinetics, thermodynamics, colligative properties).	15
п	Biomolecular interactions and their properties: Stabilizing interactions (Vander Waals, electrostatic, hydrogen bonding, hydrophobic interaction etc Composition, structure, metabolism, and function of biomolecules (carbohydrates, lipids, proteins, nucleic acids, and vitamins).	15
ш	Bioenergetics and enzymology: Bioenergetics, glycolysis, oxidative phosphorylation, coupled reaction, group transfer, biological energy transducers - Principles of catalysis, enzymes and enzyme kinetics, enzyme regulation, mechanism of enzyme catalysis, isoenzymes	15
IV	Structural conformation of proteins and nucleic acids: Conformation of proteins (Ramachandran plot, secondary, tertiary and quaternary structure; domains; motifs and folds) - Conformation of nucleic acids (A-, B-, Z-DNA), t-RNA, micro-RNA).	15
v	Stabilizing interactions in biomolecules: Stability of protein and nucleic acid structures - hydrogen bonding, covalent bonding, hydrophobic interactions and disulfide linkage.	15

Self-study	Structure of atoms, Hydrophobic inter actions, Glycolysis
	t-RNA, Nucleic acid structures

Text Books

- 1. Berg, J. M., J. L. Tymoczko and L. Stryer 2002. Biochemistry. 5th Ed., W.H. Freeman & Co., New York, pp-1050.
- 2. Kuchel P.W. and G. B. Ralston. 2008. Biochemistry. McGraw Hill (India) Private Limited, UP, pp-580.
- 3. McKee T. and J. R. McKee. 2012. Biochemistry: The Molecular Basis of Life. (7th Edition). Oxford University Press, US, pp-793.
- 4. Nelson D.L. and M.M. Cox. 2012. Lehninger's Principles of Biochemistry. (6th Edition). W. H. Freeman Publishers, New York, pp-1158.
- 5. Satyanarayana U. and U. Chakrapani, 2006. Biochemistry. (3rd Edition). Books and Allied (P) Ltd. Calcutta, pp-695

References

- 1. Buchanan, B.B., W. Gruissem and R.L. Jones. 2015. Biochemistry and Molecular Biology of Plants. John Wiley and Sons Ltd., UK, pp-1280.
- 2. Murray, R.K., D.K. Granner, P.A. Mayes and V.W. Rodwell. 2003. Harper's Illustrated Biochemistry (26th Edition), The McGraw-Hill Companies, Inc., USA, pp-704.
- 3. Palmer, T. 2004. Enzymes. Affiliated East-West Press Pvt. Ltd., New Delhi, pp-416.
- 4. Voet D. and J.G. Voet. 2011. Biochemistry. (4th Edition). John Wiley & Sons (Asia) Pvt. Ltd., pp-1428.

Web Resources:

- 1. <u>http://biochemical-pathways.com/#/map/1</u>
- 2. https://www.ebi.ac.uk/chembl/
- 3. http://www.iubmb-nicholson.org/chart.html
- 4. <u>https://www.sigmaaldrich.com/IN/en/search/enzymes?focus=products&page=1&perpage=30&sort =relevance&term=enzymes&type=product</u>

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	1	2	3	1	3
CO 2	3	2	2	2	2	1	3
CO 3	3	3	2	2	3	2	3
CO 4	3	2	1	1	3	2	2
CO5	2	2	3	3	2	3	3
Total	14	12	9	10	13	9	14
Average	2.8	2.4	1.8	2	2.6	1.8	2.8

3 - Strong, 2 - Medium, 1 - Low

COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	3	3
CO2	3	3	2	2	3
CO3	2	2	3	2	2
CO4	3	3	3	3	3
CO5	3	2	2	3	3
Total	14	13	13	13	14
Average	2.8	2.6	2.6	2.6	2.8

SEMESTER I ELECTIVE COURSE - I (b) FORENSIC BIOLOGY

Course Code	т	т	р	S	Credita	Inst. Hours Tetal hus CIA Estamol				
Course Code	L	' I	r	3	Credits	Inst. Hours	Total hrs	CIA	External	Total
ZP231EC2	3	1	-	1	3	5	75	25	75	100

Pre-requisite:

Students should know the fundamentals of natural science and have a curiosity of criminology. **Learning Objectives**:

1. Students should emphasize the importance of scientific methods in crime detection and disseminate information on the advancements in the field of forensic science.

2. Derive to skills to identify crime through various forensic techniques

On the	On the successful completion of the course, student will be able to						
CO1	recall the fundamentals of forensic biology, psychology, and criminal profiling.	K1					
CO2	outline the use of scientific evidence in a legal context using basic facts, fundamental principles, and functions of forensic science.	K2					
CO3	apply the knowledge gained on forensic, dermatoglyphic, serological and odonatological techniques to render forensic service during real-time crime scenes.	К3					
CO4	analyze fingerprints, personal identification evidence, bite marks and pug marks.	K4					
CO5	evaluate information to find strategies to resolve problems in forensic biology.	K5					

Course Outcomes

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate

Units	Contents	No. of Hours
I	Concepts and scope, functions, and historical aspects of forensic science. Importance, nature, location, collection and preservation of biological exhibits and crime scene investigation of biological evidence. Forensic dermatoglyphics - biological basis of fingerprints, formation of ridges, fundamental principles of fingerprinting, types of fingerprints, fingerprint patterns, automated fingerprint identification system.	15
п	Forensic examination of hair - importance, nature, location, structure, growth phases of hair, collection, evaluation, and tests for their identification. Forensic Serology - identification of body fluids, collection and preservation of blood evidence, distinction between human and non-human blood, semen - forensic significance of semen, composition and morphology of spermatozoa, collection, evaluation and tests for identification of semen. Composition and forensic significance of saliva, sweat, milk and urine.	15
ш	Structural variation, types of teeth - human and non-human teeth, determination of age from teeth, eruption sequence, dental anomalies, their significance in personal identification. Bite marks - forensic significance, collection and preservation of bite marks, photography and evaluation of bite marks, lip prints in forensic investigations.	15
IV	Forensic Entomology - insects of forensic importance, collection of entomological evidence during death investigations. The role of aquatic insects in forensic investigations, insect succession on carrion and its relationship to determine time since death, factors influencing insect succession on carrion, its application to forensic	15

	entomology. Forensic Microbiology - types and identification of microbial organisms of forensic significance.	
v	Importance of Wildlife Protection Act-1972- Schedules in the protection of endangered species of flora and fauna. Identification of wildlife materials such as skin, fur, bones, nails, horn, teeth, plants, plant parts and products by conventional and modern methods. Identification of pug marks of various animals, DNA techniques in wildlife investigations.	15

Self-	Historical aspects of fingerprints, Collection, and preservation of blood
study	Types of teeth, Forensic microbiology, DNA techniques

Text Books:

- 1. S. Chowdhuri (1971). Forensic Biology. New Delhi: BPRD.
- 2. R. Saferstein (1993). *Forensic Science Handbook* (Vol. 3). New Jersey: Prentice Hall.

References

- 1. R.S. Ramotowski (2013). Lee and Gaensleen's, Advances in Fingerprint Technology (3rd ed.). Boca Raton: CRC Press.
- 2. L. Stryer, (1988). Biochemistry (3rded.). New York: W.H. Freeman and Company.
- 3. R.K. Murray, D.K. Granner, P.A. Mayes and V.W. Rodwell, (1993). Harper's Biochemistry. Norwalk: APPLETON and Lange.
- 4. M. Bernstein (1997). Forensic odontology in, Introduction to Forensic Sciences (2nd ed.), W.G. Eckert (Editor). Boca Raton: CRC Press.
- 5. J. Dix (1999). Handbook for Death Scene Investigations. Boca Raton: CRC Press.
- 6. V.J. Geberth, (2006). Practical Homicide Investigation. Boca Raton CRC Press.
- 7. W.G. Eckert and S.H. James (1989). Interpretation of Bloodstain Evidence at Crime Scenes. Boca Raton: CRC Press.

8. G.T. Duncan and M.I. Tracey (1997). Serology and DNA typing in, Introduction to Forensic Sciences (2nd ed.), W.G. Eckert (Editor.). Boca Raton: CRC Press.

Web Resources:

- 1. http://www.dnaftb.org/
- 2. https://forensicdental.wordpress.com/
- 3. https://www.forensicsciencesimplified.org/
- 4. http://www.istl.org/03-spring/internet.html

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	1	2	3	1	3
CO 2	3	2	2	2	2	1	3
CO 3	3	3	2	2	3	2	3
CO 4	3	2	1	1	3	2	2
CO5	2	2	3	3	2	3	3
Total	14	12	9	10	13	9	14
Average	2.8	2.4	1.8	2	2.6	1.8	2.8

MAPPING WITH PROGRAMME OUTCOMES

3 - Strong, 2 - Medium, 1 - Low

COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	2	3	2	2	3
CO3	2	2	3	2	2
CO4	3	3	3	3	3
CO5	3	2	2	3	3
Total	13	13	13	13	14
Average	2.8	2.6	2.6	2.6	2.8

MAPPING WITH PROGRAMME SPECIFIC OUTCOMES

SEMESTER: I ELECTIVE COURSE - I (c) WILDLIFE CONSERVATION AND MANAGEMENT

Course Code	т	Т	Р	c	Credits	Inst Hound		Marks		
Course Code	L			З		Inst. Hours	Total hrs	CIA	External	Total
ZP231EC3	3	1	-	1	3	5	75	25	75	100

Pre-requisite:

Students should know the importance of wild-life and be responsible to conserve the environment and the ecosystem.

Learning Objectives

1. To equip students with adequate knowledge of various biodiversity monitoring methodologies, conservation, and management

2. To identify the issues of vertebrate pests, wildlife conflict and over abundant species, wildlife health and diseases. Course Outcomes

On the s	On the successful completion of the course, student will be able to:						
CO1	develop the ability to use the fundamental principles of wildlife ecology to solve local, regional and national conservation and management issues	K1					
CO2	develop the ability to work collaboratively on team-based projects	K2					
CO3	demonstrate proficiency in the writing, speaking, and critical thinking skills neededto become a wildlife technician	K3					
CO4	gain an appreciation for the modern scope of scientific inquiry in the field of wildlifeconservation management	K4					
CO5	develop an ability to analyze, present and interpret wildlife conservation managementinformation.	K5					

Units	Contents	No. of Hours
I	Definition and importance of wildlife; Types of ecosystems. Causes of depletion of wildlife; Classification of wetland and animal inhabitants; Population vulnerability analysis and its components; Factors responsible for the extinction of animals; Types of protected areas and the concept of zoning within the protected areas.	15
п	Wildlife Sanctuaries and National Parks in India: Theories of population dispersal; Animal movement, concept of home range and territory; Tracking movement by remote sensing and GIS. Wildlife conservation, ethics and importance of conservation; Impact of habitat destruction and fragmentation on wildlife; Biological parameters such as food, cover, forage and their impact on wild life;	15
III	Population attributes; concepts of exponential and logistic growth rates of wildlife; Density dependent and independent population regulation; Impact of introduced species on preexisting flora and fauna of wildlife; Identification and estimation of wild animals by fecal sample analysis, hair identification, pug marks and census methods. Predator-prey models and impact of predation.	15
IV	Wildlife conservation objectives- Captive breeding techniques andtranslocation and reintroduction; Inviolate area and critical habitats and their impact onwildlife; Different terrestrial habitats of wildlife in India; Restoration of degraded habitat. Damage caused by wildlife in India and its mitigation; Sick animal refuges in protected areas. Type of wildlife management-manipulative, custodial; Management of over abundant wild animal populations causing damages to nearby inhabitants and their crops and animals;	15

	Tools and techniques to control the menace of wild animals; man, wildlife	15
	conflict resolution and mitigation; Management of exotic and invasive wetland	
\mathbf{V}		
	eradication; Major diseases of domestic and wild animals and their control and	
	impact of wild life tourism.	

Self-study	Types of ecosystems, Wild life sanctuaries and national parks in India, Wild life
	conservation, Weed eradication

Text Books

1. Caughley, G., and Sinclair, A.R.E. (1994) Wildlife Ecology and Management. Blackwell Science.

2. Goutam Kumar Saha & Subhendu Mazumdar (2017). *Wildlife Biology: An Indian Perspective*. New Delhi: PHI Learning Pvt. Ltd.

3. Singh, S.K (2015). *Textbook of wildlife management* (2nd ed.). Delhi: CBS Publishers and Distributors Pvt. Ltd.

Reference Books

- 1. Woodroffe, R., Thirgood, S. and Rabinowitz, A. (2005) People and Wildlife, Conflict or Coexistence? Cambridge University.
- 2. Bookhout, T.A. (1996) Research and Management Techniques for Wildlife and Habitats (5th edition) The Wildlife Society, Allen Press.
- 3. Sutherland, W.J. (2000) The Conservation Handbook: Research, Management and Policy. Blackwell Sciences
- Hunter M.L., Gibbs, J.B. and Sterling, E.J. (2008) Problem solving in Conservation Biology and Wildlife Management: Exercises for Class, Field, and Laboratory. BlackwellPublishing.
- 5. Taj Rawat (2012). *Biodiversity Conservation and Wildlife Tourism*. Delhi: Discovery Publishing House Pvt. Ltd.
- 6. Kumar, U. &Asija, M.J. (2007). *Biodiversity Principle and Conservation* (2nd ed.). Jodhpur Student Editors.
- 7. Seshadiri Balakrishnan, (1969). *The Twilight of India's Wildlife*. Chennai: Oxford University Press.
- 8. Gee, E.P. (1969). *Wildlife in India* (1sted.). London: Collins Foundation Books.
- 9. Anthony R.E. Sinclair, John M. Fryxell& Graeme Caughley (2006). Wildlife Ecology,

Conservation, and Management (2nd ed.). USA: Blackwell Publishing.

Web Sources

- 1. <u>https://education.nationalgeographic.org/resource/wildlife-conservation/</u>
- 2. https://www.clearias.com/wildlife-conservation-projects/
- 3. https://www.wii.gov.in/
- 4. https://www.mdpi.com/2673-7159/1/2/9

MAPPING WITH PROGRAMME OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2	3	3	3	2	2
CO2	3	2	3	3	3	2	2
CO3	3	2	3	3	3	2	2
CO4	3	2	3	3	3	2	2
CO5	3	2	3	3	3	2	2
TOTAL	15	10	15	15	15	10	10
AVERAGE	3	2	3	3	3	2	2

3 – Strong, 2- Medium, 1- Low

COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	2	3	2	2	3
CO3	2	2	3	2	2
CO4	3	3	3	3	3
CO5	3	2	2	3	3
Total	13	13	13	13	14
Average	2.8	2.6	2.6	2.6	2.8

MAPPING WITH PROGRAMME SPECIFIC OUTCOMES

SEMESTER I ELECTIVE COURSE – II a) BIOSTATISTICS

Course Code	т	т	р	P S	6 Credits	Inst Houns			Marks			
Course Coue	L	' I	Γ			Inst. nours	Total hrs	CIA	External	Total		
ZP231EC4	3	1	•	1	3	5	75	25	75	100		

Pre-requisite:

Students should be aware of the importance of analysis of quantitative and qualitative information from biological studies

Learning Objectives:

The main objectives of this course are:

- 1. To enable the students to understand the basic concepts in Biostatistics and analyse the data to derive inferences in various biological experiments.
- 2. To develop analytical skills of statistics and draw valid conclusions in research.

COs	Upon completion of this course the students will be able to:	CL
CO1	recall different biological data, methods of collection and analysis of data.	K1
CO2	comprehend the design and application of biostatistics relevant to experimental and population studies.	K2
CO3	acquire skills to perform various statistical analyses using modern statistical techniques and software.	K3
CO4	analyze the data and interpret the results manually or by using software	K4
CO5	evaluate on the merits and limitation of practical problems in biological/ health management study as well as to propose and implement appropriate statistical design/ methods of analysis.	К5

K1- Remember; K2- Understand; K3- Apply; K4-Analyze; K5-Evaluate

Units	Content	No. of hours
I	Definition, scope and application of statistics; Primary and secondary data: Source and implications; Classification and tabulation of biological data: Types and applications. Variables: Definition and types. Frequency distribution: Construction of frequency, distribution table for grouped data; Graphic methods: Frequency polygon and ogive curve; Diagrammatic representation: Histogram, bar diagram, pictogram, and pie chart.	15
II	Measures of central tendency: Mean, median and mode for continuous and discontinuous variables. Measures of dispersion: Range, variation, standard deviation, standard error, and coefficient of variation.	15
III	Probability: Theories and rules; Probability - Addition and multiplication theorem; Probability distribution: Properties and application of Normal, Binomial and Poisson distributions.	15
IV	Hypothesis testing: Student 't' test - paired sample and mean difference 't' tests. Correlation: Types - Karl Pearsons Co-efficient, Rank correlation, Significance test for correlation coefficients. Regression analysis: Computation of biological data, calculation of regression co- efficient, graphical representation and prediction.	15
V	Analysis of variance: one way and two-way classification. Data analysis with comprehensive statistical software using Statistical Package for the Social Sciences (SPSS).	15

Textbooks

- 1. Arora, P. N. and P. K. Malhan. (1996). *Biostatistics*, Himalaya Publishing House, Mumbai, pp-447.
- 2.Gurumani, N. (2005). Introduction to Biostatistics, M.J.P. Publishers, Delhi, pp-407.
- 3.Das, D. and A. Das. (2004). *Academic Statistics in Biology and Psychology*, Academic Publisher, Kolkata, pp-363.
- 4.Palanichamy, S. and Manoharan, M. (1990). *Statistical Methods for Biologists*, Palani Paramount Publications, Tamil Nadu, pp-264.

Reference books

- 1. Pillai, R.S.N. and V. Bagavathi (2016). *Statistics Theory and Practice* (8thed.).New Delhi: S. Chand Publishing Company Ltd.
- 2. Khan, I. and Khanum, A. (2014). *Fundamentals of Biostatistics* (3rd ed.): Hyderabad. Ukaaz Publications.
- 3. Zar, J.H. (1984). *Biostatistical Analysis* (2nd ed.). London: Prentice-Hall International Inc.
- 4. Bailey, N.T.J. (1997). Statistical methods in Biology (3rd ed.). New York: Cam. University Press.
- 5. Sokal, R. and James, F. (1973). *Introduction to Biostatistics*. Tokyo, Japan: W.H. Freeman and Company Ltd.
- 6. Daniel, W.W. (1987). *Biostatistics: A foundations for Analysis in the Health Sciences*. New York: John Wiley & Sons.
- 7. Gupta, S.P. (1998). Statistical Methods. New Delhi: S. Chand and Company Ltd.
- 8. Banerjee, P.K. (2005). Introduction to Biostatistics. New Delhi: S. Chand and Company Ltd.
- 9. Pranab Kumar Banerjee (2009). *Introduction to Biostatistics*, New Delhi: S. Chand and Company Ltd.

Web Resources

1. https://faculty.ksu.edu.sa/sites/default/files/introduction_to_biostatistics-106.pdf

- 2. https://www.youtube.com/watch?v=1Q6_LRZwZrc
- 3. <u>https://www.youtube.com/watch?v=7CqolAC_owc</u>
- 4. https://www.ibm.com/docs/en/spss-statistics/25.0.0?topic=tutorial
- 5. <u>https://www.statisticshowto.com/probability-and-statistics/spss-tutorial-beginners/</u>

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	1	Х	1	1	3
CO 2	3	3	2	1	2	2	3
CO 3	3	2	2	Х	Х	3	3
CO 4	3	2	1	1	2	3	3
CO 5	3	3	2	2	2	3	3
TOTAL	15	11	8	4	7	12	15
AVERAGE	3	2.2	1.6	0.8	1.4	2.4	3

S-Strong (3) M-Medium (2)

L-Low (1)

COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	2	3	3	2	3
CO3	2	3	3	3	2
CO4	3	3	3	3	3
CO5	3	2	3	3	3
Total	13	14	15	14	14
Average	2.6	2.8	3	2.8	2.8

SEMESTER I ELECTIVE COURSE - II (b) APPLIED ZOOLOGY

Course Code	т	т	D	S	Cradita	Inst Houns			Mar	ks
Course Coue	L	T	Г	3	Creatis	Inst. Hours	Total hrs	CIA	External	Total
ZP231EC5	3	1	-	1	3	5	75	25	75	100

Prerequisite:

A genuine passion towards the culture of economically important cultivable organisms.

Learning Objectives

- 1. To deepen the knowledge of students in general and applied areas of Zoology.
- 2. To provide employment and job opportunities in the public, private and government sector.

	Course Outcomes	
Upon con		
CO - 1	apply the knowledge of animal husbandry in economic development.	K1
CO - 2	identify the kinds of bees and the methods of bee keeping.	K2
CO - 3	rear silkworms, harvest and market the cocoons.	K3
CO - 4	apply skills and experience about the management of poultry and Dairy farming.	K4
CO - 5	culture of economically important finfish and shell fishes.	K5

Units	Content	hours
I	Apiculture: Scope – classification and kinds of bees – bees and their society – life cycle of <i>Apis indica</i> – food of honey bees - relationship between plants and bees. Methods of bee keeping (primitive and modern) – Honey bee products: honey, bee wax, bee venom. Lac culture – scope – lac insect <i>Laccifer lacca</i> and its life cycle – processing of lac - lac products and importance.	15
Ш	Sericulture: Scope – Silk Road - CSB - Moriculture: varieties of mulberry, methods of propagation, harvesting of leaves – Common species of Silkworm– Life cycle of mulberry silkworm – Diseases of silkworm: pebrine, grasserie, sotto diseases, muscardine – pest of silkworm: uzifly. Rearing of silkworm – mounting – spinning – harvesting of cocoons – silk reeling and marketing.	15
ш	Poultry Keeping: Scope – commercial layers and broilers - poultry housing - types of poultry houses – management of chick, growers, layers and broilers – debeaking - sexing in chicks - Nutritive value of egg. Diseases of poultry – Ranikhet, Fowl pox, Coryza, Coccidiosis, Polyneuritis – vaccination.	15
IV	Dairy Farming: Scope – Breeds of Dairy animals – Establishment of a typical Dairy farm – Management of cow (Newborn, calf, Heifer, milking cow) – Diseases (Mastitis, Rinder Pest, FMD). Nutritive value of milk - dairy products (Standard milk, skimmed milk, toned milk and fermented milk-curd, ghee, cheese) Pasteurization. Leather industry – scope – processing of skin.	15
v	Integrated Farming : Definition and Scope. Agri-based fish farming – paddy cum fish culture – Horticulture-cum-fish farming. Integrated bee keeping - Live-stock fish farming - Duck-cum fish culture, fish-cum poultry farming, fish cum dairy farming, goat-cum fish integration, fish cum pig farming - multi-trophic aquaculture – Livestock – Poultry – Fish – Horticulture	15

Text Books

Arumugam, N., Murugan, T., Johnson Rajeshwar, J. and Ram Prabhu, R. (2011). *Applied Zoology*. Nagercoil: Saras Publications.

Reference Books

- 1. Vasantharaj David, B. (2004). *General and Applied Entomology* (2nd ed.). New Delhi: Tata McGraw-Hill Publishing Company Ltd.
- 2. Johnson, J. and Jeya Chandra, I. (2005). Apiculture. Marthandam: Olympic Grafix.
- 3. Tharadevi, C.S., Jayashree, K.V. and Arumugam, N. (2014). *Bee Keeeping*. Nagercoil : Saras Publications.
- 4. Johnson, M. and Kesary, M. (2015). Sericulture (5th ed.). Marthandam: CSI Press.
- 5. Ganga, G. and Sulochana Chetty (1997). *An Introduction to Sericulture*. Delhi: Oxford and IBH Publishing Co. Pvt. Ltd.
- 6. Gnanamani, M.R. (2005). Profitable Poultry Farming. Madurai: J. Hitone Publications.
- 7. Shukla, G.S. and Upadhyay, V.B. (1998). *Economic Zoology*. Jaipur: Rastogi Publications.
- 8. John Moran (2005). Tropical Dairy Farming. Australia: Landlinks Press.
- 9. Uma Shankar Singh (2008). Dairy Farming. New Delhi: Anmol Publishers.

Web Resources

- 1. <u>https://guides.library.charlotte.edu/c.php?g=173165&p=1142033</u>
- 2. <u>https://www.slideshare.net/ManoKhan88/1-basic-concepts-in-economic-zoologypptx</u>
- 3. <u>https://egov.uok.edu.in/elearning/tutorials/1011020512BR15103CR15Apiculture%20Lac%20culture%20and%20%20sericulture%20lac%20culture%20and%20%20sericulture%20upload.pdf</u>
- 4. https://www.echocommunity.org/en/resources/e7940e6c-ebbb-4b78-9115-fa5de38fa0d7
- 5. https://www.fao.org/documents/card/en?details=cb5353en

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	1	-	1	1	3
CO 2	3	3	2	1	2	2	3
CO 3	3	2	2	-	-	3	3
CO 4	3	2	1	1	2	3	3
CO 5	3	3	2	2	2	3	3
TOTAL	15	11	8	4	7	12	15
AVERAGE	3	2.2	1.6	0.8	1.4	2.4	3

S-Strong (3) M-Medium (2) L-Low (1)

COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	2	3	3	2	3
CO3	2	3	3	3	2
CO4	3	3	3	3	3
CO5	3	2	3	3	3
Total	13	14	15	14	14
Average	2.6	2.8	3	2.8	2.8

SEMESTER I ELECTIVE COURSE – II (c) PEST MANAGEMENT

Course Code ZP231EC6	т	т	D	G	Credita	Inst Hours			Mar	ks
	L	I	. r	Э	Creans	Inst. Hours	Total hrs	CIA	External	Total
ZP231EC6	3	1	•	1	3	5	75	25	75	100

Pre requisite:

Need to have a fundamental understanding of entomology, plant pathology, and integrated pest management strategies.

Learning Objectives

- 1. To provide awareness on various pests and their control measures.
- **2.** To apply Integrated Pest Management strategies to resonate home based food products with the general public.

СО	Upon completion of this course the students will be able to:	
CO - 1	outline the pest groups affecting different agricultural crops and control measures.	K1
CO - 2	select correct IPM in cropping systems with traditional and alternative control measures.	K2
CO - 3	analyze the impact of pesticides on environment and adopt better agricultural practices.	K3
CO - 4	evaluate the control measures adopted for pests of household and stored products.	K4

Course Outcomes

Units	Content	No. of hours
I	Introduction: definition of pest – outline of pest groups affecting agricultural crops – population dynamics of pests – causes for pest out breaks. Pest control methods: cultural, chemical and biological - pesticides, precautions, safety devices - pesticide poisoning symptoms and first aid.	15
II	Pesticides: organochlorine, organophosphorus and organocarbamates – inorganic and natural pesticides. Preparation of pesticides: formulations – packages, manufacture. Toxicity levels – LD ₅₀ values. Mode of action of pesticides.	15
III	Pests of Agricultural importance: bionomics and life cycles of any two pests of the following: cereals (rice); oilseeds (coconut, groundnut); vegetables (brinjal); pulses; plantation crops (coffee); fruits (citrus) and pesticide formulations.	15
IV	Household pests and Pests of stored products: household pests (cockroaches, termites, silverfish, flies and mosquitoes) and their control measures. Rodents as pests – local rodents, life history, feeding habits, reproduction, and behaviour – methods of rodent control. Stored grain pest (rice weevil, flour beetle, cigarette beetle).	15
V	Mode of Pest Control: Pesticide spraying appliances. Residual toxicity of pesticides – Environment degradation and its prevention. Biological control of pest – parasites, predators, and pathogens – chemosterilants – pheromones - Bacculovirus-mediated pest control. Integrated pest management and its relevance to 21 st century.	15

1.

Text Book

Dhawan, A.K., Balwinder Singh, Manmeet B Bhullar (2012). *Integrated Pest Management*. Chennai: Scientific Publishers.

Reference Books

- 1. Nayar, Ananthakrishnan and David (1976). *General and Applied Entomology*. New Delhi: Tata McGraw Hill Publishers.
- 2. Metcalf and Flint (1973). *Destructive and useful Insects* (4th ed.). New Delhi: Tata McGraw Hill Publishers.
- 3. Roya, D.N. and Abrown, A.W. (1981). *Entomology: Medical and Veterinary* (3rd ed.). Bangalore: The Bangalore Printing and publishing company.
- Cremlyn, R. (1979). *Pesticides: Preparation and mode of Action*. New Jersey: John Wiley & Sons Ltd.
- 5. Ignacimuthu, S. and B V David (2009). *Ecofriendly Insect Pest Management*. Delhi: Elite Publishing House Pvt Ltd (Ind).

Web Sources

- 1. https://guides.library.cornell.edu/c.php?g=672215&p=4733120
- 2. https://growingsmallfarms.ces.ncsu.edu/growingsmallfarms-insectlinks/
- 3. https://content.ces.ncsu.edu/insect-and-related-pests-of-vegetables
- 4. <u>https://content.ces.ncsu.edu/insect-management-on-organic-farms</u>
- 5. <u>https://www.epa.gov/ipm/integrated-pest-management-tools-resources-support-ipm-implementation</u>

PO1 PO2 PO3 PO4 PO5 PO6 PO7 CO1 3 3 1 1 Х 1 1 3 **CO 2** 3 2 1 2 2 3 **CO 3** 2 2 3 2 3 3 3 **CO 4** 3 2 3 1 2 3 3 TOTAL 11 8 9 4 8 9 12 **AVERAGE** 2.75 2 2.25 0.8 2 2.25 5

MAPPING WITH PROGRAMME OUTCOMES

S-Strong (3) M-Medium (2)

L-Low (1)

COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	2	3	3	2	3
CO3	2	3	3	3	2
CO4	3	3	3	3	3
Total	10	12	12	11	11
Average	2.5	3	3	2.5	2.5

SEMESTER I ELECTIVE LAB COURSE I: MOLECULES AND THEIR INTERACTION RELEVANT TO BIOLOGY & BIOSTATISTICS

Course Code	т	т	р	G	Credita	Inst Hound		Marks			
Course Code	L	L	r	3	Creans	Inst. Hours	Total hrs	CIA	External	Total	
ZP231EP1	•	-	2		2	2	30	25	75	100	

Pre-requisite

Basic practical knowledge on the molecules and their interaction to animal body and analysis of quantitative and qualitative information from biological samples.

Learning Objectives:

- 1. Understanding the salient features and functional anatomy of different systems and the skeletal system in invertebrates & vertebrates.
- 2. To design experimental problems, analyze and evaluate critically with inferential biostatistics.

Course	Outcomes

COs	Upon completion of this course the students will be able to:	KL
CO1	learn and study of chemical and physical structure of biological macromolecules.	K1
CO2	analyze the biomolecules and physicochemical parameters in samples	K2
CO3	analyze and interpret the collected data using statistical methods	K3
CO4	design biological experiments and evaluate the samples applying appropriate statical methods.	K4

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create

Molecules and their Interaction Relevant to Biology

- 1. Colorimetry- Verification of Beer-Lambert's law.
- 2. Preparation of solutions in normality, percentage, ppt, ppm
- 3. Quantitative estimation of glucose (Blood/tissue) Standard graph method
- 4. Determination of velocity of salivary amylase activity by applying Michaelis Menten equation.
- 5. Determination of pH of unknown solution using Known pKa Application of Henderson Hasselbalch equation.

Instruments/Charts/Models: Colorimeter, pH Meter, Centrifuge, Chromatogram, PAGE Biostatistics

- 6. Measures of central tendency: mean, median and mode.
- 7. Measures of dispersion- Standard deviation and standard error.
- 8. Correlation co-efficient: Length and width of molluscan shells.
- 98. Probability: Coin tossing (two coin and three coin)

10. Test of significance (student's *t*-test).

Charts/ Models: Histogram, polygon frequency, pie chart, cartogram, bar diagram

Reference Books

- 1. Geetha K. Damodaraan, 2010. Practical Biochemistry. Jaypee Brothers Medical Publishers Pvt. Ltd.
- 2. <u>Divya Shanthi</u>, 2018. An easy guide for practical Biochemistry. Jaypee Brothers Medical Publishers Pvt. limited, 01-Nov-2008 -
- 3. Gupta, S.P.(1998). Statical methods. New Delhi: S. Chand and Company Ltd.
- 4, Gurumani, N. An introduction to Biostatistics. 2004. MJP publishers, Triplicane, Chennai.

MAPPING WITH PROGRAMME OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	1	2	3	1	3
CO 2	3	2	2	2	2	1	3
CO 3	3	3	2	2	3	2	3
CO 4	3	2	1	1	3	2	2
Total	12	10	6	7	11	6	11
Average	3	2.5	1.5	1.75	2.75	1.5	2.75

3 - Strong, 2- Medium, 1- Low

COs	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	2	3	2	2	3
CO3	2	2	3	3	2
CO4	3	3	3	3	3
CO5	2	2	3	3	3
Total	12	12	14	14	14
Average	2.4	2.4	2.8	2.8	2.8

SEMESTER I

SPECIFIC VALUE ADDED COURSE

BASICS OF EXCEL

Course Code	Credits	Total Hours	Total Marks
ZP231V01	1	30	100

Prerequisite:

Basic computer literacy and familiarity with navigating computer applications.

Objectives:

To equip the students to present data using Excel's various features and printing options.

COs	On completion of this course, students will be able to	KL
CO 1	recall the components of Excel's interface and basic cell formatting.	K1
CO 2	summarize the significance of relative, absolute, and mixed cell references in formulae.	K2
CO 3	apply data entry techniques and utilize basic calculations and formulas.	K3
CO 4	analyze different chart types to determine their suitability for presenting specific types of data.	K3
CO 5	evaluate the effectiveness of using functions and charts to ensure clarity and effective visualization.	K5
CO 6	design and create various types of charts (bar, column, pie) based on specific data sets.	K6

Unit 1: Excel Essentials and Interface: Introduction to Excel's - Excel interface, workbooks, and sheets – selection of cells, rows, and columns - basic cell formatting: font, alignment, and fill.

Unit 2: Data Entry, Formulas, and Functions: Data entry techniques and AutoFill - Introduction to formulas and basic calculations - Using SUM, AVERAGE, COUNT, and other functions - cell references: relative, absolute, and mixed.

Unit 3: Data Management and Analysis: Sorting and filtering data using find and replace to manipulate data – Data analysis using excel (t test, Regression, Correlation, ANOVA), data validation for data integrity. **Unit 4: Charts and visualization**: Creating different chart types: bar, column, and pie charts - formatting and enhancing charts for clarity - Adding labels, titles, and legends to charts.

Unit 5: Printing, Sharing, and Review: Setting up print options and page layout - printing worksheets and workbooks - sharing workbooks via email and cloud storage - review of key concepts and practical exercises.

Reference books:

- 1. Kabir Das. 2021. Microsoft Excel: Short keys and formulas. Notion Press, India.
- 2. Maneet Singh Mehta. 2021. Microsoft Excel Professionals. 2021 guide. BPB Publications, India.
- 3. Lokesh Lalwani. 2019. Excel 2019 All in one. 1st Edn. BPB Publications, India.
- 4. John Walkaenbach. 2015. Microsoft Excel 2016 Bible Comprehensive tutorial resource. John Wiley and Sons, Indiana.
- 5. Greg Harvey. 2016. Microsoft Excel 2016. Dummis Publisger

SEMESTER II

CORE COURSE III: CELLULAR AND MOLECULAR BIOLOGY

CodeLTPSCreditsHoursHoursCIAExternalTotalZP232CC141-156902575100	Course	т	т	р	G	Credita	Inst.	Total		Marks	
ZP232CC1 4 1 - 1 5 6 90 25 75 100	Code	L	1	r	D	Creans	Hours	Hours	CIA	External	Total
	ZP232CC1	4	1	-	1	5	6	90	25	75	100

Pre-requisite

Students should have knowledge of the basic cellular structures and their salient functions.

Learning Objectives

1. To acquire knowledge on molecular organization of the cell and cell organelles, growth, and communications.

2. To develop skills needed to innovate and contribute to the advancement in cell and molecular biology. **Course Outcomes**

On t	On the successful completion of the course, students will be able to:				
1.	recall general concepts of cell biology and fundamental cellular	K1			
	structures and organelles.				
2.	explain the various cellular components and their activities.	K2			
3.	identify the changes or losses in cell function caused by dysregulation.	К3			
4.	compare different cellular processes, their regulation, and their significance.	K4			
5.	assess the societal and environmental impacts through cellular and molecular research.	K5			

K1- Remember; K2- Understand; K3- Apply; K4-Analyze; K5-Evaluate

Units	Contents	No. of Hours
I	General features of the cell: Cell theory; Diversity of cell size and shapes. Protoplasm and deutroplasm – cell organelles; Membrane structure and functions - membrane models, membrane/channel proteins, diffusion, osmosis, active transport, ion pumps (Sodium and potassium pump).	18
II	Cell organelles: Ultra-structure and functions of intracellular organelles – nucleus, nuclear pore complex, nucleolus, chromosomes, mitochondria, Golgi bodies, lysosomes, endoplasmic reticulum, centrosomes, peroxisomes, ribosomes.	18
ш	Cell cycle and cell division: Phases of Cell Cycle – Mitosis, Significance of Mitosis - meiosis, significance of meiosis. Control of the cell cycle - regulator molecules - positive regulation - negative regulation. Structure of DNA and RNA; Process of DNA replication, transcription, and translation in pro- and eukaryotic cells.	18
IV	Cell communication and cell signaling: Membrane - associated receptors for peptide and steroid hormones - signaling through G- protein coupled receptors, signal transduction pathways (RTK pathway and MAP kinase pathway). Gap junction and tight junction, extracellular space and matrix, interaction of cells with other cells and non-cellular structures.	18

	Cancer cells: Characteristic features of normal and cancer cells.	18
	Carcinogens: types and cancer induction. Metastasis. Oncogenes	
V	and tumor suppressor genes, therapeutic interventions of	
	uncontrolled cell growth. Apoptosis – mechanism and regulation.	
	Ageing and senescence.	

Self-	Diversity of cell size and shapes, Ultra-structure and functions of
study	lysosomes, Stages in cell cycle, Gap junction and tight junction,
	Characteristic features of normal and cancer cells.

Textbooks

- 1. Plopper, G., D. Sharp, and E. Sikorski. 2015. Lewin's Cells (Third Edition), Jones & Bartlett, New Delhi.
- 2. Ajoy Paul, 2011. Textbook of Cell and Molecular Biology, Books and Allied Pvt. Ltd.

Reference Books

- 1. Alberts, B., A. Johnson, J. Lewis, *et al.*, 2015. *Molecular Biology of the Cell* (Sixth Edition), Garland Science, New York.
- 2. Lodish, H., C. A. Kaiser, A. Bretscher, *et al.*, 2013. *Molecular Cell Biology* (Seventh Edition), Macmillan, England.
- 3. Karp, G. 2010. Cell Biology (Sixth Edition), John Wiley & Sons, Singapore.
- 4. Tropp, B, 2008. Molecular Biology Genes to Proteins (Third Edition), Jones & Bartlett, US.
- 5. Abbas, A. K., A. H. Lichtman and S. Pillai, 2007. *Cell and Molecular Immunology* (Sixth Edition), Saunders, Philadelphia.

Web Resources

- 1. https://www.inspiritvr.com/general-bio/cell-biology/passive-and-active-transport-study-guide
- 2. https://www.khanacademy.org/test-prep/mcat/cells/eukaryotic-cells/a/organelles-article
- 3. https://www.khanacademy.org/science/ap-biology/cell-communication-and-cell-cycle/changes-in-signal-transduction-pathways/a/intracellular-signal-transduction
- 4. https://bio.libretexts.org/Bookshelves/Cell_and_Molecular_Biology/Book%3A_CellsMolecules_and_M echanisms_(Wong)/11%3A_Protein_Modification_and_Trafficking/11.02%3A_Protein_Trafficking
- 5. https://openoregon.pressbooks.pub/mhccmajorsbio/chapter/control-of-the-cell-cycle/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3	3	3	3	2	3	3	3
CO2	3	3	1	2	2	2	2	3	1	2	2	1
CO3	3	3	3	3	3	3	2	2	3	2	3	2
CO4	3	3	1	2	2	2	2	2	3	2	3	2
CO5	2	3	3	3	3	3	3	2	3	3	2	3
TOTAL	14	15	11	13	13	13	12	12	12	12	13	11
AVERAGE	2.8	3.0	2.2	2.6	2.6	2.6	2.4	2.4	2.4	2.4	2.6	2.2

MAPPING WITH PROGRAMME OUTCOMES PROGRAMME SPECIFIC OUTCOMES

3-Strong, 2- Medium, 1- Low

SEMESTER II CORE COURSE IV: DEVELOPMENTAL BIOLOGY

	Course Code	т	т	р	S	Credits	Inst.	Total	Marks			
		L	I	r			Hours	hrs	CIA	External	Total	
	ZP232CC2	4	1	-	1	5	6	90	25	75	100	

Pre-requisite

A basic understanding of biology and genetics is recommended to effectively grasp the concepts in developmental biology.

Learning Objectives

- 1. Understand the principles of developmental biology to analyze and compare the embryonic development of different animal species.
- 2. Study the concepts, procedures, and uses of genes and hormones to propose strategies to improve and control the development of certain animal species.

Course Outcome

.

On the s	successful completion of the course, student will be able to:	
CO - 1	recall and summarize the chief events in animal development, recognizing their significance and historical context	K1
CO - 2	understand the different mechanisms and how extrinsic and intrinsic factors influence embryonic development in various animal embryos.	K2
CO - 3	apply their knowledge to explain the role of hormones in animal development.	К3
CO - 4	analyze the different stages of embryonic development and the genetic control mechanisms involved.	K4
CO - 5	critically evaluate ethical issues associated with cryopreservation in mammalian reproduction.	K5
CO - 6	design and propose experiments related to biochemical changes during regeneration or cryopreservation techniques.	K6

K1- Remember; K2- Understand; K3- Apply; K4-Analyze; K5-Evaluate; K6- Create

Units	Contents	No. of Hours
Ι	Pattern of animal development: Chief events in animal development. Gametogenesis: Origin of germ cells, spermatogenesis - sperm morphology in relation to the type of fertilization, oogenesis - oogenesis in insects and amphibians; composition and synthesis of yolk in invertebrates (insects and crustaceans) and vertebrates; Genetic control of vitellogenin synthesis in amphibians.	18
II	Fertilization: Sperm aggregation, sperm activation, chemotaxis, sperm maturation and capacitation in mammals, acrosome reaction. sperm – egg interaction. Sperm entry into the egg - egg activation - intracellular calcium release - cortical reaction - physiological polyspermy - fusion of male and female pronuclei - post fertilization metabolic activation – parthenogenesis.	18
III	Cleavage and gastrulation: Pattern of embryonic cleavage, mechanisms of cleavage – Gastrulation - morphogenic movements - gastrulation in respective animal embryos (Sea urchin, Amphibians, Mammals); Fate maps - (Amphibian and Chick), Epigenesis and preformation – Formation of primary germ layers	18
IV	Embryonic Development; Embryonic development of fish and birds, formation of extra embryonic membranes in mammal –Formation and migration of neural crest cells - types of neural crest cells - primary and secondary neurulation. Organogenesis (mammal): Development of ectodermal derivatives (nervous	18

	system). endodermal (digestive system), mesodermal (circulator system). Gene and development: Anterior- posterior axis in determination in drosophila, Maternal effect genes - <i>Bicoid</i> and <i>Nanos</i> proteins; Generation of dorsal - ventral polarity- Genetic control of segmentation – Gap genes; pair rule genes; Homeotic genes	
V	Post embryonic development metamorphosis: Endocrine control of metamorphosis in insect and amphibian - Endocrine control of moulting and growth in crustaceans and insects - Neoteny and pedogenesis. Regeneration: Types of regeneration, Regeneration in planaria and frog - Regenerative ability in different animal groups. Factors stimulating regeneration. – Aging and senescence: Biology of senescence- cause of aging- mechanism involved in apoptosis. Experimental Embryology: Mammalian reproduction: Mammalian reproductive cycle, Hormonal regulation, Endocrine changes associated with normal pregnancy, Induced ovulation in humans – Cryopreservation of gametes/embryos - Ethical issues in cryopreservation	18

Self-
studySpermatogenesis, Oogenesis in amphibians, parthenogenesis, Fate maps, Regenerative
ability in different animal groups..

Textbooks

- 1. Gilbert. S. F. 2006. Developmental Biology, 8th Edition, INC Publishers, USA
- 2. Balinsky, B. I. 1981. Introduction to Embryology. (5th Edition), CBS College Publishers, New York.

Reference books

- 1. Tyler, M.S, 2000. Developmental Biology A Guide for Experimental Study, Sunderland, MA.
- 2. Subramoniam, T, 2011. Molecular Developmental Biology (2nd Edition), Narosa Publishers, India.
- 3. Slack J.M.W, 2012. Essential Developmental Biology (3rd Edition), Wily-Blackwell Publications, USA.
- 4. Mari-Beffa, M. and J. Knight, 2005. Key Experiments in Practical Developmental Biology, Cambridge University Press, UK.
- 5. Lewis Wolpert, Cheryll Tickle, Alfonso Martinez Arias, 2019. *Principles of Development*. Sixth Edition. Oxford University Press, USA.

Web resources

- 1. https://www.easybiologyclass.com/tag/developmental-biology/
- 2. www.studocu.com > document > lecture-notes > view
- 3. ocw.mit.edu > courses > 7-22-developmental-biology-f.
- 4. https://learninglink.oup.com/access/barresi-12e

5. https://www.khanacademy.org/science/biology/developmental-biology

MAPPING WITH PROGRAMME OUTCOMES PROGRAMME SPECIFIC OUTCOMES

				INC								
COs	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4	PSO5	PO7
CO1	3	2	1	3	2	3	3	3	2	3	2	2
CO2	3	1	1	3	2	3	3	3	2	2	3	2
CO3	3	2	1	2	2	2	2	2	3	2	2	2
CO4	3	1	1	3	1	3	3	3	3	3	3	2
CO5	3	2	1	2	3	3	2	3	2	2	2	2
Total	15	8	5	13	10	14	13	14	12	12	12	10
Average	3	1.6	1	2.6	2	2.8	2.6	2.8	2.4	2.4	2.4	2

3 - Strong; 2 - Medium; 1 - Low

SEMESTER II CORE LAB COURSE II: LAB COURSE IN CELL BIOLOGY AND DEVELOPMENTAL BIOLOGY

Course Code	т	т	D	G	Credits	Inst.	Total		Marks	
Course Code	L	1	r	3	Creans	Hours	hrs	CIA	External	Total
ZP232CP1	-	-	4	-	2	4	60	25	75	100

Pre-requisite

Students should have acquired basic knowledge relevant to this lab course.

Learning Objectives

- 1. To demonstrate significant cellular, molecular biological principles into practical understanding.
- 2. To gain theoretical knowledge and hands-on skills in developmental biology.

Course Outcomes

1.	recall the principles of using a micrometer for cell size determination and the stages of mitosis & meiosis and their characteristics.	K1
2.	comprehend the steps involved in preparing blood smears and mounting the muscle fibres using microscopy.	K2
3.	develop handling - skills through the wet-lab course.	K3
4.	interpret observations & make connections between reproductive processes and the ecological context of the organisms studied	K4
5.	evaluate and compare different developmental stages in chick embryos.	K5
		F 1 (

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;

Cell and Molecular Biology

- 1. Determination of cell size using micrometer.
- 2. Identification of Mitotic stages in onion root tips.
- 3. Identification of various stages of meiosis in the testes of grasshopper.
- 4. Observation of polytene chromosome in salivary gland cells of Chironomus larva.
- 5. Detection of sex chromatin in squamous epithelium.
- 6. Identification of blood cells in the haemolymph of the cockroach.
- 7. Identification of blood cells in human blood.
- 8. Mounting of the coxal striated muscle fibers of cockroach.
- 9. Observation of adipocytes fat body of cockroach.
- 10. Isolation of total RNA from bacterial cells/ tissues. (Demonstration)

Spotters: Fluid mosaic model, Golgi complex, Cancer cell, Cadherins, Karyotype, Haemocytometer.

Developmental Biology

Gametogenesis - Observation of gametes from gonadal tissue sections

- 1. Oogenesis: Section through ovary of shrimp, fish, frog and mammals
- 2. Spermatogenesis: Section through testis of shrimp, fish, calottes and mammals.
- 3. **Fertilization**: Induced spawning in fish.
- 4. Embryogenesis: Observation and whole mount preparation of the
 - i. Chick blastoderm 18 hours of development
 - ii. Chick embryonic stage 24 hours of development
 - iii. Chick embryonic stage 48 hours of development
 - iv. Chick embryonic stage 72 hours of development
 - v. Chick embryonic stage 96 hours of development
- 5. Histological observation: Section through various developmental stages in chick embryo
- 6. Experimental Embryology: Regeneration in Frog Tadpoles Blastema formation.
- 7. Metamorphosis: Demonstration of metamorphosis in Frog Tadpole using exogenous Iodine
- 8. Cryopreservation: Demonstration of cryopreservation of gametes of fin fish/shell fish

Reference books:

1. Renu Gupta, Seema Makhija, Dr. Ravi Toteja, 2018. Cell Biology : Practical Manual. Prestige Publishers, Idia.

- 2. Mamta Verma, 2023. Practical Book Cell Biology & Cytogenetics Lab. Krishna Prakashan Media (P) Ltd., Idia.
- 3. Wilt, F.H. and N.K. Wessel, 1967. Methods in Developmental Biology, Thomas Y Crowell, New York.
- 4. Slack J.M.W, 2012. Essential Developmental Biology (3rd Edition), Wily-Blackwell Publications, USA, pp-496.
- 5. Mari-Beffa, M. and J. Knight, 2005. Key Experiments in Practical Developmental Biology, Cambridge University Press, UK, pp-404.

MAPPING WITH PROGRAMME OUTCOMES MAPPING WITH PROGRAMME SPECIFIC OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	1	3	2	3	2	3	3	2	3	2
CO2	3	1	1	3	2	3	2	3	3	2	2	3
CO3	3	2	1	2	2	2	2	2	2	3	2	2
CO4	3	1	1	3	1	3	2	3	3	3	3	3
CO5	3	2	1	2	3	3	2	2	3	2	2	2
Total	15	8	5	13	10	14	10	13	14	12	12	12
Average	3	1.6	1	2.6	2	2.8	2	2.6	2.8	2.4	2.4	2.4

3 - Strong; 2 - Medium; 1 - Low

SEMESTER II

ELECTIVE COURSE III: a) ECONOMIC ENTOMOLOGY

Course Code	т	т	р	G	Credita	Inst Hound	Total		Marks	
Course Code	L	I	ľ	3	Creans	mst. nours	Hours	CIA	External	Total
ZP232EC1	2	1		1	3	4	60	25	75	100

Pre-requisite

Basic background in biological sciences with a special emphasis on the study of insects.

Learning Objectives

- 1. Develop the ability to identify and classify insects into major orders and understand their economic importance.
- 2. Acquire practical skills in observing and documenting the life cycles and behaviors of beneficial and destructive insects.

Course Outcomes

On the	successful completion of the course, students will be able to:	
1.	recall the features of various insect orders and describe the life history,	K1
	social organization, and management practices of insects.	
2.	understand the biology of insects associated with medical, household,	K2
	and veterinary/public health importance.	
3.	apply their knowledge of pest biology to assess damage and beneficial	K3
	insect life cycles to practical rearing.	
4.	analyze the causes of pest outbreaks and the economic threshold levels.	K4
5.	synthesize knowledge to propose effective control measures for vectors	K5
	associated with medical, household, and veterinary/public health	
	importance.	

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;

Unit	Contents	No. of hours
Ι	Overview of insects and insect taxonomy: Insects and their biological success - Man and insects; Salient features of Class Insecta and orders - Orthoptera, Isoptera, Hemiptera, Diptera, Coleoptera, Lepidoptera, Dermaptera, Odonata, Neuroptera and Hymenoptera. Basic concepts in Insect Taxonomy and classification.	12
П	Beneficial insects: Silkworms - types, life cycle of <i>Bombyx mori</i> , diseases and its management and rearing methods - Types of honey bees, life history, social organization (colonies and caste system), honey bee care and management of bee hive - Lac insects - life history, lac cultivation; Pollinators, predators, parasitoids, scavengers, weed killers, soil-builders. Destructive insects: Insect pests - definition - Categories of pests - Types of	12
III	damage to plants by insects - Causes of pest outbreak - Economic threshold level - Biology of the insect pests - Pests of paddy, cotton, sugarcane, vegetables, coconut and stored grains cereals.	
IV	Pest management/Control strategies: Methods and principles of pest control - Natural control, Artificial control, Merits and demerits or limitations of these methods in pest control - Development and uses of pest resistant plant varieties - Integrated pest management - Concepts and practice.	12
V	Vector biology: Stable fly and cattle fly; Fowl - shaft louse and chicken flea; sheep and goat - head maggot and sheep ked. Insects associated with	12

medical importance and management - head louse *Pediculus humanuscapitis*, mosquitoes - *Anopheles*, *Culex*, *Aedes*, flea – *Xenopsylla cheopis*, eye fly, sand fly, ticks, mites and bed bug. Insects associated with household insects - cockroaches, termites and silverfish. Vectors of veterinary and public health importance - Mosquitoes as potential vectors of human diseases-control measures.

Self-study Types of honey bees, Pest of Paddy, Natural control of pest.

Textbooks

- 1. Ayyar, L.V. R, 1936. Hand book of Economic Entomology for South India. Narendra Publishing House. New Delhi.
- 2. Vasantharaj David, B. and V.V. Ramamurthy, 2016. Elements of Economic Entomology, Eighth Edition, Brillion Publishing, New York.
- 3. Ross. H.H. 195. A Text Book of Entomology, John Wiley & Sons Inc., New York.

Reference Books

- 1. Chapman, R.F., S.J. Simpson and A.E. Douglas, 2012. The Insects: Structure and Function, Fifth Edition, Cambridge University Press, Lodo.
- 2. Daly, H.V., J.T. Doyen and P.R. Ehrlich, 1978. Introduction to Insect Biology and Diversity. Mc Graw-Hill Kogakusha Ltd., Tokyo.
- 3. Hill, D.S, 1974. Agricultural Insect Pests of the Tropics and Their Control. Cambridge University Press, New York.
- 4. Krishnaswami. S, 1973. Sericulture Manual, Vol. I & II, Silkworm rearing, FAO Agricultural Science Bulletin, Rome.
- 5. Mani, M.S, 1982. General Entomology. Oxford & IBH Publishing Co., India.

Web Resources

- 1. https://egyankosh.ac.in/bitstream/123456789/85342/1/Unit-4.pdf
- 2. https://www.rlbcau.ac.in/pdf/PGCourse/Entomology/Insect%20Taxonomy%20(APE%20503).pdf
- 3. https://egov.uok.edu.in/elearning/tutorials/1011020512BR15103CR15Apiculture%20Lac%20culture%20and%20%20sericulture%20lac%20culture%20and%20%20sericulture%20upload.pdf
- 4. https://agritech.tnau.ac.in/farm_enterprises/fe_api_pestanddiseases.html
- 5. https://cpacollege.ac.in/assets/uploads/1645091697APPLIED_ZOOLOGY_SEM_NOTE_pdf.pdf

MAPPING WITH PROGRAMME OUTCOMES

	MAITING WITH TROOKAMME STEELING OUTCOMES														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5			
CO1	3	2	3	3	2	3	2	3	2	3	3	3			
CO2	3	2	3	3	2	3	2	3	3	2	2	3			
CO3	2	2	3	3	2	2	2	2	2	3	2	2			
CO4	2	2	3	3	2	2	2	2	3	3	3	3			
CO5	2	2	3	3	2	2	2	2	2	2	3	3			
Total	12	10	15	13	14	12	10	12	12	13	13	14			
Average	2.4	2	3	2.6	2.8	2.4	2	2.4	2.4	2.6	2.6	2.8			

MAPPING WITH PROGRAMME SPECIFIC OUTCOMES

^{3 -} Strong; 2 - Medium; 1-Low

SEMESTER II ELECTIVE COURSE III: b) PARASITOLOGY

	Course Code	т	Т	р	S	Credita	Inst.	Total	Marks			
	Course Code	L		ľ		Credits	Hours	Hrs.	CIA	External	Total	
	ZP232EC2	2	1	-	1	3	4	60	25	75	100	

Pre-requisite:

The students with a basic background in biological sciences with a special emphasis on the study of parasites. **Course Objectives:**

- 1. To enable the students to be aware of the cosmopolitan distribution of parasites.
- 2. Develop skills for employment in clinical laboratories and healthdepartments.

Course Outcomes

On the	On the successful completion of the course, student will be able to:									
1.	define the basic biology and life cycle of parasites including									
-	epidemiology, diagnosis, and treatment.									
2.	explain morphological characters of parasites, developmental stages	K2								
2.	and their infestation.									
3.	identify appropriate techniques and develop basic skills for	K3								
5.	detection of parasites.									
4	analyse the medical and public health aspects of human parasitic	K4								
4.	infections.									
5	compare the diagnostic methods of parasitic infestation in veterinary	K5								
5.	hospitals, clinics and research laboratories.									

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate

Unit	Contents	No. of hours
Ι	Taxonomy and classification of parasites - origin and evolution of parasitism - host parasite relationship, classification of parasites and hosts - transmission of parasites - Parasitic zoonoses- pathogenesis - clinical manifestationsof parasitic diseases.	12
II	Protozoan parasites: Introduction and classification. Intestinal Amoeba - Pathogenic free-living amoeba - Intestinal flagellates - Trypanosomiasis, Leishmaniasis, Balantoidiasis, Malaria, Isosporiasis, <i>Toxoplasmosis, Cryptosporidiosis, Pneumocystis.</i> Protozoans of minor medical importance.	12
III	Helminth parasites: <i>Trichuriasis, Trichinellosis</i> , Strongyloidiasis, Ascariasis, Enterobiasis, Filariasis, hookworm diseases, Dracunculiasis, Onchocerciasis, Loiasis, Larva migrants. Nematodes of lesser medical importance - Diphyllobothriasis, Taeniasis, Echinococcosis, Sparganosis, Schistosomiasis, Fascioliasis, Fasciolopsiasis, Paragonimiasis, Clonorchiasis, Trematodes of minor medical importance.	12
IV	Parasitic Insects : Prevalence, transmission, and control of parasitic infections. Parasitic infection in a compromised host. Applied Parasitology - Eosinophilia in parasitic infections, Nosocomial parasitic infections. Evasion and parasitic mode of life - morphological, biochemical, and ethological adaptations. Quality assurance and laboratory safety.	12

	Diagnostic methods in parasitology: General rules for microscopical	
	examination. Microscopical examination of blood, stool, urine, sputum	
	and biopsy material for parasites. Cultural examination - preparation	
V	of media - techniques for cultivation of E. histolytica, Leishmania,	12
	Plasmodium. Immunodiagnostic methods - IFA, AGD, IHA, IFAT, CFT,	
	DAT, BF, DFAT. Molecular characterization of stage specific antigen	
	nucleotide probes for diagnosis of protozoan diseases.	

Self-study	host parasite relationship, Intestinal Amoeba, Quality assurance and
	laboratory safety, General rules for microscopical examination

- 1. Jayaram Paniker C. K. & Sougata Ghosh, 2013. Paniker's Textbook of Medical Parasitology. Jaypee Brothers Medical Publishers, Maharastra, India.
- 2. Rajesh Karyakarte & Ajit Damle, 2008. *Medical Parasitology* (2nded.). Books and Allied (P) Ltd., Kolkata.

Reference Books

- 1. Ichhpujani R.L. & Rajesh Bhatia, 2002. Medical Parasitology. Jaypee printers. New Delhi
- 2. Patvaik, B.D, 2001. Parasitic Insects. Delhi: Dominant Publishers and Distributors.
- 3. Jones, A.W, 1976. *Introduction to Parasitology*.: Addison -Wesley Publishing Company. Boston, USA
- 4. Subah, C.P, 2001. Textbook of Medical Parasitology: All Rublishers and Distributors. Chennai.
- 5. Elizabeth Zeibig, 2012. Clinical Parasitology: A Practical Approach. 2nd Edition. Saunders, United States.

Web Resources

- 1. https://www.cartercenter.org/resources/pdfs/health/ephti/library/lecture_notes/health_science_students/ medicalparasitology.pdf
- 2. https://www.amboss.com/us/knowledge/general-parasitology/
- https://www.jaypeedigital.com/eReader/chapter/9789352704804/ch1 3.
- https://www.physio-pedia.com/Parasitic_Infections 4.
- https://www.mdpi.com/2414-6366/7/10/253 5.

	MAPPING WITH PROGRAMME SPECIFIC OUTCOMES													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5		
CO1	3	2	3	3	2	3	2	3	2	3	3	3		
CO2	3	2	3	3	2	3	2	3	3	2	2	3		
CO3	2	2	3	3	2	2	2	2	2	3	2	2		
CO4	2	2	3	3	2	2	2	2	3	3	3	3		
CO5	2	2	3	3	2	2	2	2	2	2	3	3		
Total	12	10	15	13	14	12	10	12	12	13	13	14		
Average	2.4	2	3	2.6	2.8	2.4	2	2.4	2.4	2.6	2.6	2.8		

MAPPING WITH PROGRAMME OUTCOMES

3 - Strong; 2 - Medium; 1-Low

SEMESTER II ELECTIVE COURSE III: c) AGROCHEMICALS AND PEST MANAGEMENT

Course Code	т	т	Р	S	Credits	Inst.	Total		Marks	
Course Coue	L	L				Hours	Hrs.	CIA	External	Total
ZP232EC3	2	1		1	3	4	60	25	75	100

Pre-requisite

The students with a basic background in biological sciences with a special emphasis on the study of fertilizers and insects' pests.

Learning Objectives

1. To enable the students to be aware of the various types of biological pesticides and their uses.

2. Able to control pestand about their selective mode of action. It also gives an account of eco-friendly

biological pesticides.

Course Outomes

On the successful completion of the course, student will be able to:										
1.	outline agrochemicals, their modes of action and their fate in the agro- ecosystem.									
2.	recognize pesticide families based on their specific modes of activity.									
3.	apply appropriate pesticide management strategies by evaluating specific pest type.									
4.	analyze the impact of agrochemicals and pesticides for effective pest management.									
5.	evaluate the efficacy of organic manures, chemical fertilizers, conventional pesticides and bio-pesticides for agronomical practices.	K5								

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate

Unit	Contents						
Ι	Definition, classification, morphology, and internal systems; Plant pests – weeds, bacteria, fungi, Viruses, nematodes, molluscs, Arthropods, birds, mammals etc.; Causes of outbreak of pest, growth and development; Classification based on nature of damage: Public health pests, Agricultural pests, Domestic pests, Animal husbandry pests, Structural pests.	12					
II	Manures: types, composition and value, sources of manures, Compost- Different composting technologies-Mechanical compost. plants- Vermicomposting- Green Manures - Oil cakes, Sewage Sludge- Biogas plant slurry.	12					
Ш	Chemical fertilizers: Classification and value. N- fertilizers: Manufacturing of Ammonium Sulphate, Ammonium Chloride, Ammonium Nitrate and urea; P- fertilizers: sources, processing rock phosphate, bones for bone meal preparation; K- fertilizers: sources, Potassium Chloride, Potassium Sulphate and Potassium Nitrate; Biofertilizers: Classification and value; <i>viz.</i> , <i>Rhizobium</i> , <i>Azotobacters</i> , <i>Azolla</i> , Blue Green Algae, VAM	12					
IV	Conventional chemicals/ pesticides based on target species: Acaricides, Fungicides, Rodenticides, Nematicides, Molluscicides, Fumigants and	12					

	Repellents; Based on chemical nature: Organophosphates;											
	Organochlorines, Carbamates etc.; Structure, chemical name, physical											
	and chemical properties; Mode of action, uses, toxicity; Application of											
	Pesticides, devices used; dose estimation for field application.											
V	Potential pesticidal plants; Plant extracts and Bio-organisms: Azadirachtin and its role in pest control; Other biopesticides: Pyrethrins, Pyrethroids, Rotenone, Nicotine and Nicotinoids. Growth inhibitors or physiological antagonists, chemo-sterilant; pheromones and attractants; Insect growth regulators, juvenile hormones, moulting hormones; BT methodology, genetically modified and transgenic plants	12										

Self-	Types of manure, Biofertilizer: Rhizobium, Azotobacters, Azolla, Blue
study	Green Algae,

- 1. Sathe, T. V. 2008. Agrochemicals and Pest Management. Daya Publishing House, New Delhi.
- 2. Patil, T. V. Sathe. 2003. Insect Predators and Pest Management. Daya Publishing House, New Delhi.

Reference books

- 1. Dent, D, 2000. Insect pest management. 2nd edition. CAB International. E-pdf.
- 2. Roberts, D.A, 1978. Fundamentals of Plant Pest Control. First Edition. W. H. Freeman.
- 3. Koul, O. and Dhaliwal, G.S, 2003. Phytochemical Biopesticides, Harwood A c a d e m i c Publishers, Amsterdam.
- 4. Pedigo, L.P, 1996. Entomology and pest management, Prentice Hall, N. Delhi.

Web Resources

- 1. https://ugcmoocs.inflibnet.ac.in/assets/uploads/1/165/5582/et/35%20script200306101003033939.pdf
- 2. https://byjus.com/biology/effects-of-agrochemicals/
- 3. https://www.vedantu.com/biology/agrochemicals
- 4. https://www.gov.nl.ca/ecc/files/env-protection-pesticides-business-manuals-applic-chapter7.pdf
- 5. https://courseware.cutm.ac.in/wp-content/uploads/2020/06/Lecture-Notes-IPDM.pdf

MAPPING WITH MAPPING WITH PROGRAMME OUTCOMES MAPPING WITH PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	3	2	2	3	3	2	3	3	3
CO2	3	2	3	3	2	2	2	3	3	2	2	3
CO3	3	2	3	3	2	2	2	2	2	3	2	2
CO4	3	2	3	3	2	2	2	2	3	3	3	3
CO5	3	2	3	3	2	2	2	2	2	2	3	3
Total	15	10	15	15	10	10	10	12	12	13	13	14
Average	3	2	3	3	2	2	2	2.4	2.4	2.6	2.6	2.8

3 - Strong; 2 - Medium; 1-Low

SEMESTER II ELECTIVE COURSE IV: a) RESEARCH METHODOLOGY

Course Code	т	т	р	G	Credits	Inst.	Total	Marks		
Course Coue	L	I	Г	3	Creans	Hours	hours	CIA	Marks External 75	Total
ZP232EC4	2	1		1	3	4	60	25	75	100

Pre-requisite

Students should have a good understanding of the fundamental methods used in experimental biology.

Learning Objectives

1. To impart knowledge on the basic principle, methodologies and applications of instruments in biological sciences.

2. Develop essential research skills to operate and apply various biological science instruments. **Course Outcomes**

On the s	uccessful completion of the course, students will be able to:	
1.	recall the principles of laboratory equipments, research techniques and the process of scientific report writing.	K1
2.	Explain the procedures involved in operating laboratory equipment, applying research techniques, and engaging in scientific writing.	K2
3.	apply biological techniques in laboratory settings to gain practical experience in research processes and scientific report writing.	К3
4.	analyze the principles and techniques to make wise choices in experimental design, data interpretation, and research reports in biological sciences.	K4
5	evaluate the quality, reliability, and limitations of data generated by research techniques and obtained from literature for specific research goals.	К5

K1 - Remember; K2 - Understand; K3 – Apply; K4 – Analyse; K5 - Evaluate

Units	Contents	No. of hours							
Ι	Analytical Techniques: Good laboratory practice (GLP), pH meter, Colorimeter, Spectrophotometer - UV-Visible, Atomic Absorption, Flame photometer, FTIR	12							
	spectrometry.								
II	Microscopy & Micro technique: Principle, Working mechanism and applications of Bright field, Phase contrast, Electron, Confocal Microscope and Atomic force microscope. Histology – Fixation, Sectioning and Staining. Histochemistry for carbohydrates, proteins, lipids.	12							
III	Separation Techniques: Centrifugation – Differential and Density gradient, types and applications of Centrifuges. Chromatography - Principle, HPLC and Affinity chromatography, GAS Chromatography Mass Spectrometry. Electrophoresis - Principle, Agarose gel electrophoresis and PAGE.	12							
IV	Tracer techniques: Radioactive isotopes, Radiolabeling, Radiocarbon dating, Radio activity counters - Scintillation Counter, Geiger Muller Counter.	12							
V	Scientific Writing: Essential steps in research, Review of literature, Literature citation, Research report – Abstract, Tables - Figures - Formatting and typing, Open access journals, Predatory journals, Impact factor, Citation index, H-index, Plagiarism, Copy Right.	12							

Self-	Principle, Working n	nechai	nism ai	nd applica	tions of Electron	n and P	hase contrast
study	Microscope, Centrifu	igatio	n - Pri	nciple, ty	pes and applicat	ions of	Centrifuges,
	Bioinstrumentation	of	pН	meter,	Colorimeter,	and	UV-Visible

Spectrophotometer, Quantification of carbohydrate, protein, lipid, Essential steps
in research.

1. Veerakumari. L, 2006. Bioinstrumentation. MJP Publishers. Triplicane, Chennai.

2. Gurumani. N, 2006. Research Methodology for Biological Sciences. MJP Publishers. Triplicane, Chennai Reference Reales

Reference Books

- 1. Marimuthu. R, 2008. Microscopy and Microtechnique. MJP Publishers. Chennai.
- Keith Wilson and John Walker, 2018. Principles and Techniques of Practical Biochemistry (8th ed.). Cambridge University Press. India.
- 3. Pranav Kumar, 2018. *Fundamentals and Techniques of Biophysics and Molecular Biology*. Pathfinder publication. India.
- 4. Paneerselvam R, 2016. Research Methodology. PHI Learning Pvt. Ltd. India.

5. Gurumani N, 2010. Scientific thesis writing and paper presentation. MJP Publishers. Chennai

Web Resources

- 1. https://en.wikipedia.org/wiki/Microtechnique
- 2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5206469/
- 3. https://www.vedantu.com/physics/spectroscopy
- 4. https://en.wikipedia.org/wiki/Blot_(biology)
- 5. https://en.wikipedia.org/wiki/List_of_research_methods_in_biology

MAPPING WITH PROGRAMME OUTCOMES MAPPING WITH PROGRAMME SPECIFIC OUTCOMES

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	1	3	2	3	2	3	3	2	3	2
CO2	3	1	1	3	2	3	2	3	3	2	2	3
CO3	3	2	1	2	2	2	2	2	2	3	2	2
CO4	3	1	1	3	1	3	2	3	3	3	3	3
CO5	3	2	1	2	3	3	2	2	3	2	2	2
Total	15	8	5	13	10	14	10	13	14	12	12	12
Average	3	1.6	1	2.6	2	2.8	2	2.6	2.8	2.4	2.4	2.4

3 -Strong; 2 -Medium; 1 -Low

SEMESTER II

ELECTIVE COURSE IV: b) APICULTURE

Course Code	т	т	р	C	Credite	Inst Houns	Total				
Course Coue	L	1	r	3	Creans	mst. nours	Hours	CIA	Marks External 75	Total	
ZP232EC5	3	1	1	1	3	4	60	25	75	100	

Pre-requisite

Students should be aware of importance of honey bees and their impacts on the ecosystem.

Learning Objectives

- 1. Impart knowledge on the morphology, life cycle, characteristics of honey bees and bee keeping.
- 2. Acquired skills to perform bee keeping from managing colonies of bees to harvest honey and other bee related by-products in different setups and as an Entrepreneurial venture.

Course Outcomes

On the	successful completion of the course, students will be able to:	
1.	understand the morphology, life cycle, characteristics of honey bees and bee keeping.	K1
2.	acquire skills to perform bee keeping from managing colonies of bees in order to harvest honey and other Bee related by-products in different setups and as an Entrepreneurial venture.	K2
3.	knowledge on the harvesting, preserving and processing of bee products and identification of the appropriate markets to sell the produce.	К3
4.	identify of different bee enemies and diseases and control measures and its management	K4
5.	evaluate the honey chemical composition of different environment.	K5

K1 - Remember; K2 - Understand; K3 – Apply; K4-Analyze K5-Evaluate

Units	Contents	No. of
Ι	Introduction to Apiculture. Scope and importance. History, classification, types of honey bees - morphology, mouth parts and sting of Honey bees – life cycle of different species and their behavioural patterns. Social organization of bee colony. morphology, mouth parts and sting of Honey bees –	Hours 12
II	Bee-keeping system, tools and equipment's needed for bee keeping. Types of bee hives, structure, and functional features. Criteria for site selection for apiculture and factors affecting them. Flora for apiculture – selection of Bees for apiculture, Method of bee keeping.	12
III	Identification and Preventive measures to be taken against pests (The Greater wax moth & Wasps and Hornets) and parasites (tracheal mite). Diseases (Nosema disease, Sac-brood disease, European foulbrood disease), and their control measures. Colony collapse disorder and its management.	12
IV	Bee products, uses and importance- Honey, Royal jelly, Propolis, Pollen and Bee venom. Harvesting, Processing, Packaging and Marketing of bee products.	12
V	Apiculture industry around the world and Role of Central Bee Research & Training institute in India. Apiculture as an Entrepreneurial venture.	12

Self-study	Introduction to Apiculture. History, classification, types, life Cycle, Tools and
-	equipment's needed for bee keeping, Diseases affecting honey bees and their
	control measures. Bee products, uses and importance- Honey, Royal jelly,
	Propolis, Pollen and Bee venom.

Text book

- 1. Singh, D., Singh, D. Pratap. 2006. A Handbook of Beekeeping. Agrobios, India.
- 2. Mishra R.C. 2002. Perspectives in Indian Apiculture, Agrobios, India.

Reference Books

- 1. Dharam P. Abrol, 2019. Beekeeping: A compressive guide to bees and beekeeping. Scientific Publishers. Jodhpur, India.
- Caron, D.W, 2013 (revised from 1999). Honey Bee Biology and Beekeeping. Wicwas Press. United States.
- 3. Dewey M. Caron, Lawrence John Connor, 2013. Honey Bee Biology and Beekeeping, Revised Hardcover. Wicwas Press. United States.
- 4. Ross Conrad, Gary Paul Nabhan, 2007. *Natural Beekeeping: Organic Approaches to Modern Apiculture*. Chelsea Green Publishing. United States.
- 5. Alphonse Avitabile, Jan Propst, 1998. The Beekeeper's Handbook. Comstock Pub. Associates. Cornell University Press.

Web Resources

- 1. https://www.britannica.com/topic/beekeeping
- 2. https://nbb.gov.in/pdf/Pests&DiseasesHoneybees&Management.pdf
- 3. https://www.aakash.ac.in/important-concepts/biology/apiculture-in-indian
- 4. https://vikaspedia.in/agriculture/farm-based-enterprises/bee-keeping-1/about-bee-keeping
- 5. https://beebuilt.com/pages/beekeeping-for-beginners

MAPPING WITH PROGRAMME OUTCOMES PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	1	2	2	2	3	3	2	2	3	2	2
CO2	3	1	2	2	1	3	2	2	2	3	2	2
CO3	3	2	2	2	2	2	1	2	2	3	2	2
CO4	2	3	3	2	2	3	3	2	3	3	2	2
CO5	3	2	3	2	3	2	3	2	3	3	2	2
TOTAL	13	9	12	10	10	13	12	10	12	15	10	10
AVERAGE	2.6	1.8	2.4	2	2	2.6	2.4	2	2.4	3	2	2

3 – Strong, 2- Medium, 1- Low

SEMESTER II

ELECTIVE COURSE – IV: c) SERICULTURE

Course Code	т	т	р	ç	Credits	Inst.	Total	Marks			
Course Code	L	I	r	ð	Creans	Hours	hours	CIA	MarksExternal75	Total	
ZP232EC6	2	1		1	3	4	60	25	75	100	

Pre-requisite:

Students should have a fundamental knowledge of biology, an entrepreneurial mindset, and an appreciation for the economic and cultural significance of sericulture. **Learning Objectives:**

- 1. To gain in-depth knowledge of silk fiber types, sources, properties, and the significance of sericulture in India.
- 2. To develop practical skills in moriculture, silkworm rearing, and cocoon processing.

Course Outcomes

On th	e successful completion of the course, students will be able to:	
1.	recall and describe the fundamental concepts, terminology, and processes related to	K1
	sericulture, and sericulture industry practices.	
2.	demonstrate the key concepts, processes, properties of silk fiber, mulberry cultivation	K2
	techniques, cocoon characteristics, and the significance of sericulture practices in the	
	silk production industry.	
3.	apply their knowledge of sericulture principles and practices to solve practical problems	K3
	and optimizing cocoon processing techniques.	
4.	critically analyze the challenges and opportunities in the sericulture industry and assess	K4
	the economic and environmental implications of sericulture practices.	
5.	evaluate the effectiveness of different sericulture practices, technologies, and policies,	K5
	and make informed decisions to optimize silk production.	

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate

Unit	Contents	No. of hours
Ι	Introduction to textile fibers; types - natural and synthetic fibers; sources of silk fiber - Tasar, Muga, Anaphe, Gonometa, Fagara, spider and mussel; properties and importance of silk fiber. History, development, status, characteristics, and advantages of sericulture in India.	12
II	Host plants; Moriculture - distribution, morphology, propagation- seedling, cutting, grafting, layering and micropropagation methods, maintenance- irrigation, manuring and pruning, pests and diseases of mulberry.	12
III	<i>Bombyx mori</i> - morphology, anatomy, life cycle, geographical locations, larval moults, voltinism, indigenous and commercial races. Diapause. Egg-storage and transportation.	12
IV	Rearing houses and equipment. Rearing operations- disinfection, brushing, feeding and spacing. Moulting and spinning. Harvest. Rearing methods- chawki, lasso, showa, shelf-rearing, floor-rearing and shoot rearing. Diseases of <i>Bombyx mori</i> - protozoan, bacterial, viral and fungal. Pests of silkworm- Uzi fly, dermestids, mites, ants, nematodes, aves and mammals.	12
V	Physical and commercial characteristics of cocoons. Cocoon harvesting and marketing. Cocoon sorting, stifling, deflossing, riddling, cooking, brushing, reeling and re-reeling. Weaving. By-products of sericulture industry.	12

Self-study	Sources of silk fiber - Tasar, Muga, Anaphe, Gonometa, Fagara, spider
	and mussel.

- Ganga, G and J. Sulochana Chetty, 2019. An Introduction to sericulture (2nd edn). Oxford and IBH Pub. Co. Pvt. Ltd., Delhi.
- 2. Johnson, M. and Kesary, M, 2019. Sericulture. Saras publications, Nagercoil.

Reference Books

- 1. Food and Agriculture organization 1976. Manual on sericulture I, II & III. Delhi: Oxford and IBH Pub. Co. Pvt. Ltd., Delhi.
- 2. M.S. Jolly, 1987. Appropriate Sericulture Techniques. CSR & TI, Mysore
- 3. S.R. Ullal and M.N. Narasimhanna, 1987. Hand book of practical sericulture. CSB, Bangalore.
- 4. M.N. Narasimhanna, 1988. Manual on silkworm egg production. CSB, Bangalore.
- 5. Dandin, S.B., Jayaswal, J. and Giridhar. K, 2010. Handbook of sericulture technologies, Central Silk Board, Bangalore, India.

Web Resources

- 1. https://agritech.tnau.ac.in/sericulture/
- 2. https://csb.gov.in/
- 3. https://silks.csb.gov.in/
- 4. https://www.britannica.com/topic/sericulture
- 5. https://agritech.tnau.ac.in/sericulture/seri_index.html
- 6. https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/sericulture
- 7. https://vikaspedia.in/agriculture/farm-based-enterprises/sericulture/sericulture-in-india

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	2	1	1	1	1	1	2	1	1	3	1	1
CO 2	2	2	1	1	1	1	2	1	1	3	1	1
CO 3	3	2	1	1	1	1	2	1	1	3	1	1
CO 4	3	3	1	1	1	1	2	1	1	3	1	1
CO 5	3	3	1	1	1	1	2	1	1	3	1	1
TOTAL	13	11	5	5	5	5	10	5	5	15	5	5
AVERAGE	2.6	2.2	1	1	1	1	2	1	1	3	1	1

3 - Strong, 2 - Medium, 1 - Low

SEMESTER II ELECTIVE LAB COURSE -II: ECONOMIC ENTOMOLOGY & RESEARCH METHODOLOGY

Course Code	т	т	D	S	Credits	Inst.	Total		Marks	
Course Coue	L	I	r	3	Creans	Hours	hours	CIA	External	Total
ZP232EP1	2	1		1	3	2	30	25	75	100

Pre-requisite:

Students should have knowledge relevant to economic entomology & research methodology. Learning Objectives:

- 1. To equip students with skills in both the practical aspects of economic entomology and the essential research methodology.
- 2. To acquire skills necessary for conducting meaningful studies in these field.

Course Outcomes

On the	successful completion of the course, students will be able to:	
1.	comprehend the principles and concepts of economic entomology &	K1
	research methodology.	
2.	summarize the economic impact of insect pests.	К2
	explain the principles behind different ttechniques & research designs	NZ
3.	utilize appropriate methodologies to collect and analyze data of insects	К3
	and apply statistical techniques to interpret and draw conclusions.	ĸJ
4.	interpret practical solutions to address challenges in economic	K4
	entomology, incorporating research methodology principles.	Λ4
5.	evaluate research methodologies and experimental designs used in	К5
	economic entomology studies.	N3

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;

Economic Entomology

- 1. Collect and identify common insect pests in your local environment.
- 2. Dissection: Silk glands of silkworm.
- 3. Mounting: Mouth parts of honey bee. Mosquito.
- 4. Phototactic behavior of insect pests.
- 5. Collection and Identification of insect pests in the mulberry plants.

Specimen/Spotters/Models: Silk worm larva, pupa and adult, honey bee colony, Rhinoceros beetle, Red Palm Weevil, Banana Stem Weevil.

Research Methodology

- 1. Whole mount preparation of two specimens.
- 2. Separation of amino acids using thin layer chromatography.
- 3. Sectioning and staining of a tissue.
- 4. Separation of pigments by column chromatography using plant extract (Demonstration).
- 5. Agarose Gel electrophoresis (Demonstration).

Instruments/ Charts/ Models: Phase contrast microscope, fluorescent microscope, spectrophotometer,

HPLC, flame photometer, microtome, electrophoretic apparatus.

Textbooks

- 1. Bajia, R., R.N. Kencharaddi, B. Bairwa, K. Kumar, V. Kumar. *Practical handbook on fundamentals of entomology*. Second edition. Kalyani Publishers. Chennai.
- 2. Gurumani N, 2019. Research Methodology: For Biological Sciences. Kindle Edition. Chennai.

Reference Books

- 1. Trigunayat, M.M, 2016. A Manual of Practical Entomology. 3rd Ed. Scientific Publishers. Jodhpur, Rajasthan.
- 2. Agrawal, N, 2022. *Fundamental Entomology: A Practical Manual*. Narendra Publishing House, New Delhi.
- 3. Ch Raja Goud, 2022. Practical Manual on Fundamentals of Entomology. Om Publishers. New Delhi
- 4. Vinayak Bairagi & Mousami Vaibhav Munot, 2019. *Research Methodology: A Practical and Scientific Approach*. CRC press. Florida, United States.
- 5. Catherine Dawson, 2002. *Practical Research Methods*: A User-Friendly Guide to Mastering Research Techniques and Projects. Ubs Publishers' Distributors Pvt.Ltd. Ernakulam, Kerala.

Web Resources

- 1. https://www.researchgate.net/publication/327282644_A_Textbook_of_Economic_Entomology_M_Dayi b
- 2. https://academic-accelerator.com/encyclopedia/economic-entomology
- 3. https://books.google.co.in/books?id=z2s6nQAACAAJ&printsec=frontcover&source=gbs_ge_summary_r &cad=0#v=onepage&q&f=false
- 4. https://jru.edu.in/studentcorner/labmanual/agriculture/Insect%20morphology%20and%20%20systematics .pdf
- 5. https://www.scribbr.com/dissertation/methodology/

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO 1	PSO2	PSO3	PSO4	PSO5
CO 1	1	1	1	1	1	1	2	1	1	2	1	1
CO 2	1	1	1	1	1	1	2	1	1	2	2	1
CO 3	2	1	1	1	2	1	2	1	1	3	2	2
CO 4	3	2	2	2	1	3	2	1	1	3	1	3
CO 5	3	2	2	3	3	1	2	1	2	3	3	3
TOTAL	10	7	7	8	5	7	10	5	6	13	9	10
AVERAGE	2.6	2.2	2.2	2.4	1.4	2.2	2	1.4	1.6	2.4	1.8	2.6

SEMESTER II SKILL ENHANCEMENT COURSE I: POULTRY FARMING

Course Code	т	т	р	C	Credits	Inst.	Total		Marks	
Course Coue	L	1	r	3	Creans	Hours	hours	CIA	External	Total
ZP232SE1	2	1		1	2	4	60	25	75	100

Pre-requisite

Students should be aware of economic and cultural importance of Poultry farming.

Learning Objectives:

- 1. To know the needs for Poultry farming and the status of India in global market.
- 2. Acquire the skills to apply the techniques and practices needed or Poultry farming.

Course Outcomes:

On th	e successful completion of the course, students will be able to:	
1.	recall the key components of a poultry house to ensure optimal	K1
	living conditions for poultry.	
2.	explain the different methods of rearing and the significance of	K2
	proper vaccination programs in poultry farming.	
3.	develop a practical feeding plan for a specific stage of poultry	K3
	considering their nutritional requirements.	
4.	analyze the impact of different housing systems on poultry welfare and productivity,	K4
5.	critically assess the effectiveness of poultry feeds and the disease	K5
	control measures in poultry farming,	
6.	design a comprehensive waste management and recycling system	K6
	for poultry farms.	

K1- Remember; K2- Understand; K3- Apply; K4-Analyze; K5-Evaluate; K6- Create

Unit	Contents	No. of hours
	General introduction to poultry farming - Definition of Poultry - Past	12
Ι	and present scenario of poultry industry in India - Principles of	
	poultry housing - Poultry houses - Systems of poultry farming	
II	Management of chicks - growers and layers - Management of	12
11	Broilers Preparation of project report for banking and insurance.	
	Poultry feed management-Principles of feeding, Nutrient	12
III	requirements for different stages of layers and broilers - Feed	
	formulation and Methods of feeding.	
IV	Poultry diseases-viral, bacterial, fungal and parasitic (two each);	12
1 V	symptoms, control and management; Vaccination programme.	
	Selection, care and handling of hatching eggs - Egg testing. Methods	12
V	of hatching Brooding and rearing Sexing of chicks Farm and	
	Water Hygiene - Recycling of poultry waste.	

Text Books

1. Sreenivasaiah., P. V, 2015. Textbook of Poultry Science. 1st Edition. Write & Print Publications, New Delhi.

2. Jull A. Morley, 2007. Successful Poultry Management. 2nd Edition. Biotech Books, New Delhi.

Reference Books

- 1. Jadhav, J, Siddique, M.F., Kavitha Meena, 2019. *Handbook of Poultry Production and Management*. 3rd Edition. Jaypee Brothers Medical Publishers, Chennai.
- 2. Jagdish Prasad, 2015. *Poultry Production and Management Paperback 1*. 5h Edition Kalyani Publishers, Chennai.
- 3. Das, D, 2021. *Textbook on Poultry Management*. Narendra Publishing House, New Delhi.
- 4. Eiri Board, 2008. *Hand Book of Poultry Farming and Feed Formulations*. Engineers India Research Institute. India.
- 5. Sharma R P et al. Poultry Production in India. Poultry Science, India.

Web Resources

•

- 1. https://dahd.nic.in/sites/default/filess/Excerpts%20of%20Poultry%20Farmn%20Manual.pdf
- 2. https://www.fao.org/3/i3531e/i3531e.pdf
- 3. https://egyankosh.ac.in/bitstream/123456789/59735/1/Poultry%20farming%20in%20india.pdf
- 4. https://seyianwo.files.wordpress.com/2015/04/poultry-lecture-note.pdf
- 5. https://surendranathcollege.ac.in/new/upload/SUMAN_TAMANGPoultry%20Farming2021-02-14Poultry%20Farming-converted.pdf

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO 1	PSO2	PSO3	PSO4	PSO5
CO1	1	2	1	2	2	2	2	1	1	3	3	3
CO2	1	1	2	3	1	2	2	1	2	2	1	2
CO3	2	1	2	2	1	3	2	1	2	2	2	2
CO4	3	2	1	2	1	2	1	2	2	1	1	1
CO5	1	2	2	2	2	2	3	2	3	2	2	3
CO6	2	3	3	2	3	3	3	3	2	3	2	2
Total	13	11	11	14	10	14	13	10	12	13	11	13
Average	2.1	1.8	1.8	2.3	1.6	2.3	2.1	1.6	2	2.1	1.8	2.1

MAPPING WITH PROGRAMME OUTCOMES

3 - Strong; 2 - Medium; 1-Low

SEMESTER – I & II LIFE SKILL TRAINING – I ETHICS

Course	L	т	Р	S	Credits	Inst.	Total	Marks		
Code	Ľ			5	Creans	Hours	Hours	CIA	External	Total
PG23LST1	1				1	1	1	-	50	100

Prerequisites: Value education-its purpose and significance in the present world

Learning Objectives

- 1. To familiarize students with values of the individual, society, culture, one's own health and life philosophy,
- 2. To impart knowledge of professional ethical standards, codes of ethics, obligations, safety, rights, and other worldwide challenges.

Course Outcomes	On completion of this course the student will be able to	
C01	understand deeper insight of the meaning of their existence.	K1
CO2	recognize the philosophy of life and individual qualities	K2
CO3	acquire the skills required for a successful personal and professional life.	K3
CO4	develop as socially responsible citizens.	K4
CO5	create a peaceful, communal community and embrace unity.	К3

Unit	Contents	No. of Hours
Ι	Goal Setting: Definition - Brainstorming Session – Setting Goals – Few components of setting goals.	3
П	Group Dynamics: Definition - Nature of Groups – Types of Groups – Determinants of group behavior	3
III	Conflict Resolution: Definition – What is a conflict resolution – Why should conflicts be resolved? - Lessons for life	3
IV	Decision Making: Definition – 3C's of decision making – Seven Steps to effective decision making – Barriers in effective decision making	3
V	Anger Management: Effects of anger – Tips to reduce anger – Anger warning signs – Identify your triggers – Ways to cool down your anger.	3
	TOTAL	15
Self-Stu	ty Portion: Salient values for life, Human Rights, Social Evils and how to tack	tle them, Holistic

living, Duties and responsibilities.

Life Skill Training - I Ethics, Holy Cross College (Autonomous), Nagercoil

Reference Books

- 1.Holy Cross College (Autonomous), Nagercoil (2007). Foundation Course Life's Challenges.1.Sipca Computers.
- 2. Mathew, Sam (2010). Self Help Life Book. Opus Press Publisher.
- Swati Mehrotra. (2016). Inspiring Souls Moral Values and Life Skills (1st ed.) [English].
 Acevision Publisher Pvt. Ltd.
- 4. Irai Anbu, v. (2010, August). Random Thoughts (1st ed.) [English]. THG Publishing Private Limite 2019.
- Holy Cross College (Autonomous), Nagercoil (2007). Foundation Course Life's Challenges. Sipca Computers.

Web Resources

- 1. https://positivepsychology.com/goal-setting-exercises/
- 2. https://www.gov.nl.ca/iet/files/CCB_GroupDynamicsGuide.pdf
- 3. https://en.wikipedia.org/wiki/Conflict_resolution
- 4. https://asana.com/resources/decision-making-process
- 5. <u>https://www.mayoclinic.org/healthy-lifestyle/adult-health/in-depth/anger-management/art-</u> 20045434